Die Eigenzustände des Drehimpulses bestimmen

Jetzt ist es an der Zeit, die Eigenzustände |l, m> des Drehimpulses zu bestimmen. Wenn Sie die Eigenzustände haben, kennen Sie auch die Eigenwerte, und wenn Sie die Eigenwerte kennen, können Sie die Hamilton-Funktion lösen und erhalten die erlaubten Energieniveaus eines Körpers mit Drehimpuls.

images Machen Sie nicht die Annahme, dass |l, m> die Eigenzustande sind, nehmen Sie stattdessen |α, β>, wobei der Eigenwert von L2 dann L2 |α ,β > = hstrok2α |α ,β > lautet. Der Eigenwert von L2 ist somit hstrok2 α, was Sie nun für α lösen müssen. Analog ergibt sich der Eigenwert von Lz: Lz | α, β > = hstrokβ|α,β >.

Um weiter voranzukommen, müssen Sie nun Erzeugungs- und Vernichtungsoperatoren einführen (genau wie in Kapitel 4 beim harmonischen Oszillator). Auf diese Weise können Sie beispielsweise das Problem für den Grundzustand lösen, indem Sie den Vernichtungsoperator an den Grundzustand anlegen und das Ergebnis gleich null setzen – und dann lösen Sie es für den Grundzustand selbst.

In diesem Fall ist der Erzeugungsoperator L+ und der Vernichtungsoperator L. Diese Operatoren erhöhen und erniedrigen die Quantenzahl von Lz. Analog zu Kapitel 4 kann man die Erzeugungs- und Vernichtungsoperatoren wie folgt definieren:

ipad Erzeugen: L+ = Lx + iLy

ipad Vernichten: L = Lx – iLy

Diese beiden Gleichungen bedeuten:

images

images

Ebenfalls gilt:

images

Das bedeutet, dass folgende Ausdrücke L2 entsprechen:

ipad images

ipad images

ipad images

Darüber hinaus gelten folgende Gleichungen:

ipad images

ipad images

ipad images

Okay, mit all diesen Gleichungen können Sie nun arbeiten; jetzt folgt der interessante Teil. Betrachten Sie zunächst die Wirkung von L+ auf |α, β>:

images

Um zu sehen, was images ergibt, wendet man den Operator Lz auf diese Gleichung an:

images

Aus images folgt, dass images; somit ergibt sich:

images

Und weil images ist, erhält man folgende Gleichung:

images

Diese Gleichung besagt, dass der Eigenzustand images auch ein Eigenzustand des Operators Lz mit dem Eigenwert (β + 1) ist. Oder verständlicher ausgedrückt:

images

Dabei ist c eine Konstante, die später in dem Abschnitt »Die Eigenwerte der Erzeugungs- und Vernichtungsoperatoren bestimmen« berechnet wird.

Der Operator L+ erhöht die Quantenzahl β um 1. Der Vernichtungsoperator bewirkt dementsprechend das folgende:

images

Nun betrachten Sie, was images ergibt:

images

Da L2 ein Skalar ist, kommutiert er mit allen Operatoren. Da images ist, gilt folgendes:

images

Und weil images ist, gilt die folgende Gleichung:

images

Der Vernichtungsoperator bewirkt dementsprechend das folgende:

images

Diese Gleichungen besagen also, dass die Operatoren L± den Eigenwert von |α, β> nicht verändern.

Okay, aber was sind α und β? Lesen Sie weiter!

Quantenphysik für Dummies
titlepage.xhtml
part0000.html
part0001_split_000.html
part0001_split_001.html
part0002_split_000.html
part0002_split_001.html
part0002_split_002.html
part0002_split_003.html
part0003.html
part0004_split_000.html
part0004_split_001.html
part0004_split_002.html
part0004_split_003.html
part0004_split_004.html
part0004_split_005.html
part0004_split_006.html
part0004_split_007.html
part0004_split_008.html
part0004_split_009.html
part0004_split_010.html
part0004_split_011.html
part0004_split_012.html
part0005.html
part0006_split_000.html
part0006_split_001.html
part0006_split_002.html
part0006_split_003.html
part0006_split_004.html
part0006_split_005.html
part0006_split_006.html
part0006_split_007.html
part0006_split_008.html
part0006_split_009.html
part0006_split_010.html
part0006_split_011.html
part0006_split_012.html
part0007_split_000.html
part0007_split_001.html
part0007_split_002.html
part0007_split_003.html
part0007_split_004.html
part0007_split_005.html
part0007_split_006.html
part0007_split_007.html
part0007_split_008.html
part0007_split_009.html
part0007_split_010.html
part0007_split_011.html
part0007_split_012.html
part0007_split_013.html
part0008_split_000.html
part0008_split_001.html
part0008_split_002.html
part0008_split_003.html
part0008_split_004.html
part0008_split_005.html
part0008_split_006.html
part0008_split_007.html
part0008_split_008.html
part0008_split_009.html
part0008_split_010.html
part0008_split_011.html
part0008_split_012.html
part0008_split_013.html
part0008_split_014.html
part0008_split_015.html
part0008_split_016.html
part0008_split_017.html
part0008_split_018.html
part0008_split_019.html
part0008_split_020.html
part0008_split_021.html
part0008_split_022.html
part0008_split_023.html
part0009.html
part0010_split_000.html
part0010_split_001.html
part0010_split_002.html
part0010_split_003.html
part0010_split_004.html
part0010_split_005.html
part0010_split_006.html
part0010_split_007.html
part0010_split_008.html
part0010_split_009.html
part0010_split_010.html
part0010_split_011.html
part0010_split_012.html
part0010_split_013.html
part0010_split_014.html
part0010_split_015.html
part0010_split_016.html
part0010_split_017.html
part0010_split_018.html
part0010_split_019.html
part0010_split_020.html
part0011_split_000.html
part0011_split_001.html
part0011_split_002.html
part0011_split_003.html
part0011_split_004.html
part0011_split_005.html
part0011_split_006.html
part0011_split_007.html
part0011_split_008.html
part0011_split_009.html
part0011_split_010.html
part0011_split_011.html
part0011_split_012.html
part0011_split_013.html
part0012.html
part0013_split_000.html
part0013_split_001.html
part0013_split_002.html
part0013_split_003.html
part0013_split_004.html
part0013_split_005.html
part0013_split_006.html
part0013_split_007.html
part0013_split_008.html
part0013_split_009.html
part0013_split_010.html
part0013_split_011.html
part0013_split_012.html
part0014_split_000.html
part0014_split_001.html
part0014_split_002.html
part0014_split_003.html
part0014_split_004.html
part0014_split_005.html
part0014_split_006.html
part0014_split_007.html
part0014_split_008.html
part0015.html
part0016_split_000.html
part0016_split_001.html
part0016_split_002.html
part0016_split_003.html
part0016_split_004.html
part0016_split_005.html
part0016_split_006.html
part0016_split_007.html
part0016_split_008.html
part0016_split_009.html
part0016_split_010.html
part0016_split_011.html
part0017_split_000.html
part0017_split_001.html
part0017_split_002.html
part0017_split_003.html
part0017_split_004.html
part0017_split_005.html
part0017_split_006.html
part0017_split_007.html
part0017_split_008.html
part0017_split_009.html
part0017_split_010.html
part0017_split_011.html
part0017_split_012.html
part0018_split_000.html
part0018_split_001.html
part0018_split_002.html
part0018_split_003.html
part0018_split_004.html
part0018_split_005.html
part0018_split_006.html
part0018_split_007.html
part0018_split_008.html
part0018_split_009.html
part0018_split_010.html
part0018_split_011.html
part0018_split_012.html
part0018_split_013.html
part0018_split_014.html
part0018_split_015.html
part0018_split_016.html
part0019.html
part0020_split_000.html
part0020_split_001.html
part0020_split_002.html
part0020_split_003.html
part0020_split_004.html
part0020_split_005.html
part0020_split_006.html
part0020_split_007.html
part0020_split_008.html
part0020_split_009.html
part0020_split_010.html
part0020_split_011.html
part0020_split_012.html
part0020_split_013.html
part0020_split_014.html
part0020_split_015.html
part0020_split_016.html
part0020_split_017.html
part0020_split_018.html
part0020_split_019.html
part0021_split_000.html
part0021_split_001.html
part0021_split_002.html
part0021_split_003.html
part0021_split_004.html
part0021_split_005.html
part0021_split_006.html
part0021_split_007.html
part0021_split_008.html
part0021_split_009.html
part0021_split_010.html
part0021_split_011.html
part0021_split_012.html
part0022_split_000.html
part0022_split_001.html
part0022_split_002.html
part0022_split_003.html
part0022_split_004.html
part0022_split_005.html
part0022_split_006.html
part0022_split_007.html
part0022_split_008.html
part0022_split_009.html
part0022_split_010.html
part0022_split_011.html
part0022_split_012.html
part0022_split_013.html
part0022_split_014.html
part0022_split_015.html
part0022_split_016.html
part0023.html
part0024_split_000.html
part0024_split_001.html
part0024_split_002.html
part0024_split_003.html
part0024_split_004.html
part0024_split_005.html
part0024_split_006.html
part0024_split_007.html
part0024_split_008.html
part0024_split_009.html
part0024_split_010.html
part0025_split_000.html
part0025_split_001.html
part0025_split_002.html
part0025_split_003.html
part0025_split_004.html
part0025_split_005.html
part0025_split_006.html
part0025_split_007.html
part0025_split_008.html
part0025_split_009.html
part0025_split_010.html
part0026.html
part0027.html