Zeitabhängigkeit führt zu einer physikalischen Lösung

Man kann die Zeitabhängigkeit zur Lösung von ψ(x, y, z) hinzufügen und erhält ψ(x, y, z, t), wenn man sich daran erinnert, dass images Damit erhält man für ψ(x, y, z, t):

images

Da images gilt, kann man auch Folgendes schreiben:

images

Da nun auf der rechten Seite der Gleichung der Ortsvektor r steht, kann man die linke Seite entsprechend schreiben:

images

Das ist die Lösung der Schrödinger-Gleichung, aber sie ist unphysikalisch (wie dies schon für die eindimensionale Schrödinger-Gleichung für ein freies Teilchen in Kapitel 3 diskutiert wurde). Warum? Versucht man beispielsweise diese Gleichung für drei Dimensionen zu normalisieren, erhält man Folgendes:

images

wobei C eine Konstante ist.

Demzufolge divergiert das Integral und man kann ψ(r, t), so wie es hier steht, nicht normalisieren. Was macht man also, um eine sinnvolle Lösung zu erhalten?

images Der Schlüssel zur Lösung dieses Problems liegt in folgender Erkenntnis: Kennt man einige Lösungen der Schrödinger-Gleichung, so ist auch jede Linearkombination dieser Lösungen wieder eine Lösung. Mit anderen Worten, man addiert verschiedene Wellenfunktionen, so dass man ein Wellenpaket erhält, das eine Sammlung von Wellenfunktionen der Form eik · r ist und folgende Bedingungen erfüllt:

ipad Die Wellenfunktionen interferieren an einem Ort konstruktiv.

ipad Sie interferieren destruktiv (gehen gegen null) an allen anderen Orten.

Betrachten Sie die zeitunabhängige Form:

images

Allerdings sind bei einem freien Teilchen die Energiezustände nicht in diskrete Bänder unterteilt. Die möglichen Energien sind kontinuierlich, sodass man die Summe als Integral schreibt:

images

Was ist φ(k)? Es ist das dreidimensionale Analogon von φ(k), das in Kapitel 3 erläutert wurde; es stellt die Amplitude von jeder Komponente der Wellenfunktion dar. Man kann φ(k) durch die Fourier-Transformation von images (mit x < 0) bestimmen:

images

In der Praxis können Sie φ(k) selber wählen. Betrachten Sie zum Beispiel die folgende Form von φ(k), die ein Gausssches Wellenpaket beschreibt (Man beachte: der exponentielle Teil ist für die Gauss'sche Wellenform verantwortlich):

iamges

Dabei sind a und A Konstanten. Um A zu bestimmen, kann man zunächst φ(k) normalisieren. Das geht folgendermaßen:

images

Die Lösung des Integrals ergibt:

images

Somit folgt für die Wellenfunktion:

images

Man kann diese Gleichung entwickeln und erhält dann die Darstellung der zeitunabhängigen Wellenfunktion für ein Gauss'sches Wellenpaket im Dreidimensionalen:

images

So sieht es also aus, wenn V(r) = 0 gilt. Aber können Sie auch solche Aufgaben lösen, wo V(r) nicht null ist? Natürlich können Sie das. Lesen Sie einfach den nächsten Abschnitt.

Quantenphysik für Dummies
titlepage.xhtml
part0000.html
part0001_split_000.html
part0001_split_001.html
part0002_split_000.html
part0002_split_001.html
part0002_split_002.html
part0002_split_003.html
part0003.html
part0004_split_000.html
part0004_split_001.html
part0004_split_002.html
part0004_split_003.html
part0004_split_004.html
part0004_split_005.html
part0004_split_006.html
part0004_split_007.html
part0004_split_008.html
part0004_split_009.html
part0004_split_010.html
part0004_split_011.html
part0004_split_012.html
part0005.html
part0006_split_000.html
part0006_split_001.html
part0006_split_002.html
part0006_split_003.html
part0006_split_004.html
part0006_split_005.html
part0006_split_006.html
part0006_split_007.html
part0006_split_008.html
part0006_split_009.html
part0006_split_010.html
part0006_split_011.html
part0006_split_012.html
part0007_split_000.html
part0007_split_001.html
part0007_split_002.html
part0007_split_003.html
part0007_split_004.html
part0007_split_005.html
part0007_split_006.html
part0007_split_007.html
part0007_split_008.html
part0007_split_009.html
part0007_split_010.html
part0007_split_011.html
part0007_split_012.html
part0007_split_013.html
part0008_split_000.html
part0008_split_001.html
part0008_split_002.html
part0008_split_003.html
part0008_split_004.html
part0008_split_005.html
part0008_split_006.html
part0008_split_007.html
part0008_split_008.html
part0008_split_009.html
part0008_split_010.html
part0008_split_011.html
part0008_split_012.html
part0008_split_013.html
part0008_split_014.html
part0008_split_015.html
part0008_split_016.html
part0008_split_017.html
part0008_split_018.html
part0008_split_019.html
part0008_split_020.html
part0008_split_021.html
part0008_split_022.html
part0008_split_023.html
part0009.html
part0010_split_000.html
part0010_split_001.html
part0010_split_002.html
part0010_split_003.html
part0010_split_004.html
part0010_split_005.html
part0010_split_006.html
part0010_split_007.html
part0010_split_008.html
part0010_split_009.html
part0010_split_010.html
part0010_split_011.html
part0010_split_012.html
part0010_split_013.html
part0010_split_014.html
part0010_split_015.html
part0010_split_016.html
part0010_split_017.html
part0010_split_018.html
part0010_split_019.html
part0010_split_020.html
part0011_split_000.html
part0011_split_001.html
part0011_split_002.html
part0011_split_003.html
part0011_split_004.html
part0011_split_005.html
part0011_split_006.html
part0011_split_007.html
part0011_split_008.html
part0011_split_009.html
part0011_split_010.html
part0011_split_011.html
part0011_split_012.html
part0011_split_013.html
part0012.html
part0013_split_000.html
part0013_split_001.html
part0013_split_002.html
part0013_split_003.html
part0013_split_004.html
part0013_split_005.html
part0013_split_006.html
part0013_split_007.html
part0013_split_008.html
part0013_split_009.html
part0013_split_010.html
part0013_split_011.html
part0013_split_012.html
part0014_split_000.html
part0014_split_001.html
part0014_split_002.html
part0014_split_003.html
part0014_split_004.html
part0014_split_005.html
part0014_split_006.html
part0014_split_007.html
part0014_split_008.html
part0015.html
part0016_split_000.html
part0016_split_001.html
part0016_split_002.html
part0016_split_003.html
part0016_split_004.html
part0016_split_005.html
part0016_split_006.html
part0016_split_007.html
part0016_split_008.html
part0016_split_009.html
part0016_split_010.html
part0016_split_011.html
part0017_split_000.html
part0017_split_001.html
part0017_split_002.html
part0017_split_003.html
part0017_split_004.html
part0017_split_005.html
part0017_split_006.html
part0017_split_007.html
part0017_split_008.html
part0017_split_009.html
part0017_split_010.html
part0017_split_011.html
part0017_split_012.html
part0018_split_000.html
part0018_split_001.html
part0018_split_002.html
part0018_split_003.html
part0018_split_004.html
part0018_split_005.html
part0018_split_006.html
part0018_split_007.html
part0018_split_008.html
part0018_split_009.html
part0018_split_010.html
part0018_split_011.html
part0018_split_012.html
part0018_split_013.html
part0018_split_014.html
part0018_split_015.html
part0018_split_016.html
part0019.html
part0020_split_000.html
part0020_split_001.html
part0020_split_002.html
part0020_split_003.html
part0020_split_004.html
part0020_split_005.html
part0020_split_006.html
part0020_split_007.html
part0020_split_008.html
part0020_split_009.html
part0020_split_010.html
part0020_split_011.html
part0020_split_012.html
part0020_split_013.html
part0020_split_014.html
part0020_split_015.html
part0020_split_016.html
part0020_split_017.html
part0020_split_018.html
part0020_split_019.html
part0021_split_000.html
part0021_split_001.html
part0021_split_002.html
part0021_split_003.html
part0021_split_004.html
part0021_split_005.html
part0021_split_006.html
part0021_split_007.html
part0021_split_008.html
part0021_split_009.html
part0021_split_010.html
part0021_split_011.html
part0021_split_012.html
part0022_split_000.html
part0022_split_001.html
part0022_split_002.html
part0022_split_003.html
part0022_split_004.html
part0022_split_005.html
part0022_split_006.html
part0022_split_007.html
part0022_split_008.html
part0022_split_009.html
part0022_split_010.html
part0022_split_011.html
part0022_split_012.html
part0022_split_013.html
part0022_split_014.html
part0022_split_015.html
part0022_split_016.html
part0023.html
part0024_split_000.html
part0024_split_001.html
part0024_split_002.html
part0024_split_003.html
part0024_split_004.html
part0024_split_005.html
part0024_split_006.html
part0024_split_007.html
part0024_split_008.html
part0024_split_009.html
part0024_split_010.html
part0025_split_000.html
part0025_split_001.html
part0025_split_002.html
part0025_split_003.html
part0025_split_004.html
part0025_split_005.html
part0025_split_006.html
part0025_split_007.html
part0025_split_008.html
part0025_split_009.html
part0025_split_010.html
part0026.html
part0027.html