Der klassische und der quantenmechanische harmonische Oszillator

Nachdem Sie die Eigenwerte, die Eigenzustände und die Eigenfunktionen des quantenmechanischen harmonischen Oszillators berechnet haben, lohnt es sich an dieser Stelle, einen Vergleich zum klassischen harmonischen Oszillator zu ziehen.

In dem Abschnitt »Berechnung des Energiespektrums« haben Sie zunächst die Energieeigenwerte des quantenmechanischen harmonischen Oszillators bestimmt. Sie lauten:

iamges

Dieses Ergebnis ist von grundlegender Bedeutung, da es besagt, dass der quantenmechanische harmonische Oszillator nicht beliebige Energiewerte annehmen kann, sondern nur bestimmte. Alle Anregungsenergien liegen äquidistant zum Grundzustand mit dem Abstand images. Wenn Sie nun den Grundzustand n = 0 betrachten, erkennen Sie, dass die niedrigste Energie, die der quantenmechanische harmonische Oszillator annehmen kann, images beträgt. Das heißt, er besitzt auch noch am Nullpunkt eine endliche, von null verschiedene Energie E0. Diese wird im Allgemeinen als Nullpunktsenergie oder Grundzustandsenergie des harmonischen Oszillators bezeichnet. Dieses Ergebnis unterscheidet sich somit deutlich von der klassischen Physik, in der die niedrigste Energie E = 0 ist.

Eine Folge der endlichen Nullpunktsenergie besteht darin, dass die Aufenthaltswahrscheinlichkeit für n = 0 eine nichtverschwindende Breite besitzt. Das heißt, ein Teilchen lässt sich nicht exakt bei x = 0 lokalisieren, dem Minimum des Potentials, wie man es von der klassischen Physik kennt; vielmehr besitzt sein Aufenthaltsort eine endliche zugehörige Ortsunschärfe. Diesen für die Quantentheorie charakteristischen Sachverhalt, der in Abbildung 5.5 dargestellt ist, bezeichnet man auch als Nullpunktsschwankung.

 

ipad

Abbildung 5.5: Vergleich von klassischem und quantenmechanischem harmonischen Oszillator

Betrachtet man nun die Wellenfunktion für hohe angeregte Zustände n, so erkennt man, dass die quantenmechanische Aufenthaltswahrscheinlichkeit |ψ(x)|2 in die klassische Aufenthaltswahrscheinlichkeit übergeht. Abbildung 5.6 zeigt eine Darstellung der klassischen und der quantenmechanischen Aufenthaltswahrscheinlichkeit bei der Koordinate x. Je größer n wird, desto ähnlicher werden sich die Kurven.

 

ipad

Abbildung 5.6: Vergleich der Aufenthaltswahrscheinlichkeiten von klassischem und quantenmechanischem harmonischen Oszillator

Quantenphysik für Dummies
titlepage.xhtml
part0000.html
part0001_split_000.html
part0001_split_001.html
part0002_split_000.html
part0002_split_001.html
part0002_split_002.html
part0002_split_003.html
part0003.html
part0004_split_000.html
part0004_split_001.html
part0004_split_002.html
part0004_split_003.html
part0004_split_004.html
part0004_split_005.html
part0004_split_006.html
part0004_split_007.html
part0004_split_008.html
part0004_split_009.html
part0004_split_010.html
part0004_split_011.html
part0004_split_012.html
part0005.html
part0006_split_000.html
part0006_split_001.html
part0006_split_002.html
part0006_split_003.html
part0006_split_004.html
part0006_split_005.html
part0006_split_006.html
part0006_split_007.html
part0006_split_008.html
part0006_split_009.html
part0006_split_010.html
part0006_split_011.html
part0006_split_012.html
part0007_split_000.html
part0007_split_001.html
part0007_split_002.html
part0007_split_003.html
part0007_split_004.html
part0007_split_005.html
part0007_split_006.html
part0007_split_007.html
part0007_split_008.html
part0007_split_009.html
part0007_split_010.html
part0007_split_011.html
part0007_split_012.html
part0007_split_013.html
part0008_split_000.html
part0008_split_001.html
part0008_split_002.html
part0008_split_003.html
part0008_split_004.html
part0008_split_005.html
part0008_split_006.html
part0008_split_007.html
part0008_split_008.html
part0008_split_009.html
part0008_split_010.html
part0008_split_011.html
part0008_split_012.html
part0008_split_013.html
part0008_split_014.html
part0008_split_015.html
part0008_split_016.html
part0008_split_017.html
part0008_split_018.html
part0008_split_019.html
part0008_split_020.html
part0008_split_021.html
part0008_split_022.html
part0008_split_023.html
part0009.html
part0010_split_000.html
part0010_split_001.html
part0010_split_002.html
part0010_split_003.html
part0010_split_004.html
part0010_split_005.html
part0010_split_006.html
part0010_split_007.html
part0010_split_008.html
part0010_split_009.html
part0010_split_010.html
part0010_split_011.html
part0010_split_012.html
part0010_split_013.html
part0010_split_014.html
part0010_split_015.html
part0010_split_016.html
part0010_split_017.html
part0010_split_018.html
part0010_split_019.html
part0010_split_020.html
part0011_split_000.html
part0011_split_001.html
part0011_split_002.html
part0011_split_003.html
part0011_split_004.html
part0011_split_005.html
part0011_split_006.html
part0011_split_007.html
part0011_split_008.html
part0011_split_009.html
part0011_split_010.html
part0011_split_011.html
part0011_split_012.html
part0011_split_013.html
part0012.html
part0013_split_000.html
part0013_split_001.html
part0013_split_002.html
part0013_split_003.html
part0013_split_004.html
part0013_split_005.html
part0013_split_006.html
part0013_split_007.html
part0013_split_008.html
part0013_split_009.html
part0013_split_010.html
part0013_split_011.html
part0013_split_012.html
part0014_split_000.html
part0014_split_001.html
part0014_split_002.html
part0014_split_003.html
part0014_split_004.html
part0014_split_005.html
part0014_split_006.html
part0014_split_007.html
part0014_split_008.html
part0015.html
part0016_split_000.html
part0016_split_001.html
part0016_split_002.html
part0016_split_003.html
part0016_split_004.html
part0016_split_005.html
part0016_split_006.html
part0016_split_007.html
part0016_split_008.html
part0016_split_009.html
part0016_split_010.html
part0016_split_011.html
part0017_split_000.html
part0017_split_001.html
part0017_split_002.html
part0017_split_003.html
part0017_split_004.html
part0017_split_005.html
part0017_split_006.html
part0017_split_007.html
part0017_split_008.html
part0017_split_009.html
part0017_split_010.html
part0017_split_011.html
part0017_split_012.html
part0018_split_000.html
part0018_split_001.html
part0018_split_002.html
part0018_split_003.html
part0018_split_004.html
part0018_split_005.html
part0018_split_006.html
part0018_split_007.html
part0018_split_008.html
part0018_split_009.html
part0018_split_010.html
part0018_split_011.html
part0018_split_012.html
part0018_split_013.html
part0018_split_014.html
part0018_split_015.html
part0018_split_016.html
part0019.html
part0020_split_000.html
part0020_split_001.html
part0020_split_002.html
part0020_split_003.html
part0020_split_004.html
part0020_split_005.html
part0020_split_006.html
part0020_split_007.html
part0020_split_008.html
part0020_split_009.html
part0020_split_010.html
part0020_split_011.html
part0020_split_012.html
part0020_split_013.html
part0020_split_014.html
part0020_split_015.html
part0020_split_016.html
part0020_split_017.html
part0020_split_018.html
part0020_split_019.html
part0021_split_000.html
part0021_split_001.html
part0021_split_002.html
part0021_split_003.html
part0021_split_004.html
part0021_split_005.html
part0021_split_006.html
part0021_split_007.html
part0021_split_008.html
part0021_split_009.html
part0021_split_010.html
part0021_split_011.html
part0021_split_012.html
part0022_split_000.html
part0022_split_001.html
part0022_split_002.html
part0022_split_003.html
part0022_split_004.html
part0022_split_005.html
part0022_split_006.html
part0022_split_007.html
part0022_split_008.html
part0022_split_009.html
part0022_split_010.html
part0022_split_011.html
part0022_split_012.html
part0022_split_013.html
part0022_split_014.html
part0022_split_015.html
part0022_split_016.html
part0023.html
part0024_split_000.html
part0024_split_001.html
part0024_split_002.html
part0024_split_003.html
part0024_split_004.html
part0024_split_005.html
part0024_split_006.html
part0024_split_007.html
part0024_split_008.html
part0024_split_009.html
part0024_split_010.html
part0025_split_000.html
part0025_split_001.html
part0025_split_002.html
part0025_split_003.html
part0025_split_004.html
part0025_split_005.html
part0025_split_006.html
part0025_split_007.html
part0025_split_008.html
part0025_split_009.html
part0025_split_010.html
part0026.html
part0027.html