10. Legados a largo plazo

¿Quién no ha oído hablar del consabido número de granos de trigo que, según las leyendas, pidió como recompensa el inventor del ajedrez? Esta cantidad se forma duplicando sucesivamente cada uno de los números obtenidos; primer escaque del tablero, el inventor pidió un grano; para el segundo, dos; etc. A cada uno de los escaques le corresponde el doble que al anterior, hasta llegar al 64 escaque.

Mas crecimiento tan vertiginoso se da, no sólo duplicando sin cesar la cifra anterior, sino con una norma de crecimiento notablemente más moderada. Un capital que produce el 5% anual a interés compuesto, aumenta cada año 1,05 veces. Parece éste un crecimiento de poca consideración, más al cabo de cierto tiempo el capital llega a alcanzar grandes proporciones.

Esto explica que después de transcurridos muchos años de ser legada una herencia crezca de forma insólita. Parece extraño que dejando el finado una suma harto modesta se convierta ésta en un enorme capital. Es bien conocido el testamento de Franklin, famoso estadista norteamericano. Fue publicado en Recopilación de diversas obras de Benjamín Franklin. He aquí un fragmento de él: “Dono mil libras esterlinas a los habitantes de Boston.

Si las aceptan, estas mil libras, deben ser administradas por los vecinos más distinguidos de la ciudad, que las concederán en préstamo al 5%, a los artesanos jóvenes. Al cabo de cien años esta suma se elevará a 131.000 libras esterlinas. Deseo que entonces sean empleadas, 100.000 libras en la construcción de edificios públicos, y las 31.000 restantes concedidas en crédito por un plazo de 100 años. Al cabo de este tiempo la suma habrá llegado a 4.061.000 libras esterlinas, de las cuales 1.060.000 dejo a disposición de los vecinos de Boston y 3.000.000, al municipio de Massachusetts. En lo sucesivo no me atrevo a seguir extendiéndome con más disposiciones”.

Franklin, que dejó una herencia de 1.000 libras, distribuyó millones de ellas. Y no se trata de ningún malentendido. El cálculo matemático confirma que las disposiciones del testador son ciertas. Las 1.000 libras aumentaron cada año en 1,05 veces y, al cabo de 100 años se convirtieron en

x = 1.000 * 1,05100 libras.

Esta expresión puede calcularse mediante los logaritmos:

log x = log 1.000 + 100 log 1,05 = 5,11893,

de donde

x= 131.000

de acuerdo con el testamento. En el segundo siglo las 31.000 llegarán a

y = 31 000·1,05100,

de donde, al aplicar los logaritmos resultará:

y = 4.076.500

suma que se diferencia muy poco de la señalada en el testamento.

Dejemos a juicio del lector fa solución del siguiente problema, que aparece en la obra Los señores Golovliov, de Saltikov-Schedrín:

“Porfiri Vladimirovich está en su despacho escribiendo cantidades en hojas de papel. Trata de saber cuánto dinero tendría si los cien rublos que le regaló su abuelo al nacer, en lugar de ser gastados por su madre, hubieran sido depositados en la caja de Ahorros. Sin embargo, el resultado no es muy elevado: ochocientos rublos”.

Si suponemos que Porfiri tiene a la sazón 50 años y, admitiendo que hubiera hecho bien el cálculo (poco probable, pues sin duda alguna desconocía los logaritmos, por lo que no podría resolver problemas de interés compuesto) hay que establecer qué tanto por ciento concedía en aquellos tiempos la Caja de Ahorros.

Álgebra recreativa
titlepage.xhtml
sec_0001.xhtml
sec_0002.xhtml
sec_0003.xhtml
sec_0004.xhtml
sec_0005.xhtml
sec_0006.xhtml
sec_0007.xhtml
sec_0008.xhtml
sec_0009.xhtml
sec_0010.xhtml
sec_0011.xhtml
sec_0012.xhtml
sec_0013.xhtml
sec_0014.xhtml
sec_0015.xhtml
sec_0016.xhtml
sec_0017.xhtml
sec_0018.xhtml
sec_0019.xhtml
sec_0020.xhtml
sec_0021.xhtml
sec_0022.xhtml
sec_0023.xhtml
sec_0024.xhtml
sec_0025.xhtml
sec_0026.xhtml
sec_0027.xhtml
sec_0028.xhtml
sec_0029.xhtml
sec_0030.xhtml
sec_0031.xhtml
sec_0032.xhtml
sec_0033.xhtml
sec_0034.xhtml
sec_0035.xhtml
sec_0036.xhtml
sec_0037.xhtml
sec_0038.xhtml
sec_0039.xhtml
sec_0040.xhtml
sec_0041.xhtml
sec_0042.xhtml
sec_0043.xhtml
sec_0044.xhtml
sec_0045.xhtml
sec_0046.xhtml
sec_0047.xhtml
sec_0048.xhtml
sec_0049.xhtml
sec_0050.xhtml
sec_0051.xhtml
sec_0052.xhtml
sec_0053.xhtml
sec_0054.xhtml
sec_0055.xhtml
sec_0056.xhtml
sec_0057.xhtml
sec_0058.xhtml
sec_0059.xhtml
sec_0060.xhtml
sec_0061.xhtml
sec_0062.xhtml
sec_0063.xhtml
sec_0064.xhtml
sec_0065.xhtml
sec_0066.xhtml
sec_0067.xhtml
sec_0068.xhtml
sec_0069.xhtml
sec_0070.xhtml
sec_0071.xhtml
sec_0072.xhtml
sec_0073.xhtml
sec_0074.xhtml
sec_0075.xhtml
sec_0076.xhtml
sec_0077.xhtml
sec_0078.xhtml
sec_0079.xhtml
sec_0080.xhtml
sec_0081.xhtml
sec_0082.xhtml
sec_0083.xhtml
sec_0084.xhtml
sec_0085.xhtml
sec_0086.xhtml
sec_0087.xhtml
sec_0088.xhtml
sec_0089.xhtml
sec_0090.xhtml
sec_0091.xhtml
sec_0092.xhtml
sec_0093.xhtml
sec_0094.xhtml
sec_0095.xhtml
sec_0096.xhtml
sec_0097.xhtml
sec_0098.xhtml
sec_0099.xhtml
sec_0100.xhtml
sec_0101.xhtml
sec_0102.xhtml
sec_0103.xhtml
sec_0104.xhtml
sec_0105.xhtml
sec_0106.xhtml
sec_0107.xhtml
sec_0108.xhtml
sec_0109.xhtml
sec_0110.xhtml
sec_0111.xhtml
sec_0112.xhtml
sec_0113.xhtml
sec_0114.xhtml
sec_0115.xhtml
sec_0116.xhtml
sec_0117.xhtml
sec_0118.xhtml
sec_0119.xhtml
sec_0120.xhtml
sec_0121.xhtml
sec_0122.xhtml
sec_0123.xhtml
sec_0124.xhtml
sec_0125.xhtml
sec_0126.xhtml
sec_0127.xhtml