13. Un cálculo muy laborioso

En la práctica del cálculo se encuentran operaciones matemáticas cuya realización sería extraordinariamente difícil si para ello no se aplicaran los métodos simplificadores del álgebra. Supongamos que sea necesario efectuar las siguientes operaciones:

(Este cálculo es necesario para establecer si la técnica relacionada con las velocidades de los movimientos de los cuerpos - pequeñas en comparación con la velocidad de la difusión de las ondas electromagnéticas - puede valerse de las antiguas leyes que regulan la suma de velocidades, sin tener en cuenta aquellos cambios que la teoría de la relatividad ha introducido en la mecánica. De acuerdo con la mecánica antigua, el cuerpo sometido a dos movimientos, efectuados en una misma dirección, con velocidades de v1 y v2 kilómetros por segundo, tiene una velocidad de (vl + v2) kilómetros por segundo. La nueva teoría aplica la siguiente fórmula para la velocidad de los cuerpos

kilómetros por segundo, donde c es la velocidad de difusión de la luz en el vacío, aproximadamente igual a 300 000 kilómetros por segundo. Un cuerpo sometido a dos movimientos, efectuados en una misma dirección, y a una velocidad de kilómetro por segundo cada uno, según la antigua mecánica desarrollaba 2 kilómetros por segundo de velocidad y, según la nueva,

¿Cuál es la diferencia entre esas dos fórmulas? ¿Es perceptible esa diferencia para los aparatos más sensibles de medición? A fin de aclarar esta importante cuestión es preciso realizar el cálculo indicado).

Empleemos dos métodos: primero, el aritmético, y después, mostremos cómo se puede efectuar mediante el álgebra. Basta con echar un vistazo a la larga serie de cifras que figuran más abajo para convencerse de la indiscutible superioridad del procedimiento algebraico.

En primer lugar transformemos el quebrado

Efectuamos ahora la división del numerador por el denominador:

Esta operación resulta agotadora y laboriosa, siendo muy fácil confundirse e incurrir en error, en tanto que para la solución del problema tiene mucha importancia saber con exactitud dónde termina el período del nueve y comienza el de otra cifra.

Compárese ahora con qué brevedad cumple su tarea el álgebra, valiéndose del siguiente planteamiento: si a es un quebrado muy pequeño, entonces

1/(1 + a) ≈ 1 - a

donde el signo ≈ significa “aproximadamente igual a”.

Es muy fácil convencerse de la veracidad de este aserto: comparemos el dividendo 1 con el producto del divisor por el cociente:

1 = (1 + a) · (1 - a)

es decir, 1 = 1 - a2.

Como a es una fracción muy pequeña (por ejemplo 0,001), el valor de a2 será todavía inferior (0,000001), pudiendo ser despreciado.

Apliquemos lo expuesto a nuestro cálculo [5]:

2 - 0.0000000000222… = 1.999999999777…

Se llega, pues, al mismo resultado, pero el procedimiento es mucho más corto.

(Quizás tenga interés el lector en conocer la importancia que reviste el resultado del problema. Por él se deduce que en virtud de la escasa magnitud de las velocidades examinadas - en comparación con la de la luz -, no se observa en la práctica ninguna desviación de la antigua ley de la suma de velocidades: esa desviación se pone de manifiesto sólo en la cifra undécima del número hallado, en tanto que las mediciones de longitud más exactas no rebasan la novena cifra, y en la práctica, la técnica se limita a 4 ó 6 cifras. En consecuencia, podemos afirmar sin ninguna reserva que la nueva mecánica, la de Einstein, no altera los cálculos técnicos relativos al movimiento “lento” de los cuerpos en el espacio (en comparación con la velocidad de difusión lumínica).

Pero existe una rama de la vida actual, donde esta conclusión incondicional hace falta tomarla con cuidado. Se trata de la cosmonáutica. Ahora hemos alcanzado ya las velocidades de 10 km por segundo (durante los vuelos de Sputniks y cohetes). En este caso la divergencia de la mecánica clásica y de la de Einstein se pone de manifiesto ya en la cifra novena. Hay que tener en cuenta qué velocidades mayores no están tan lejos.

Álgebra recreativa
titlepage.xhtml
sec_0001.xhtml
sec_0002.xhtml
sec_0003.xhtml
sec_0004.xhtml
sec_0005.xhtml
sec_0006.xhtml
sec_0007.xhtml
sec_0008.xhtml
sec_0009.xhtml
sec_0010.xhtml
sec_0011.xhtml
sec_0012.xhtml
sec_0013.xhtml
sec_0014.xhtml
sec_0015.xhtml
sec_0016.xhtml
sec_0017.xhtml
sec_0018.xhtml
sec_0019.xhtml
sec_0020.xhtml
sec_0021.xhtml
sec_0022.xhtml
sec_0023.xhtml
sec_0024.xhtml
sec_0025.xhtml
sec_0026.xhtml
sec_0027.xhtml
sec_0028.xhtml
sec_0029.xhtml
sec_0030.xhtml
sec_0031.xhtml
sec_0032.xhtml
sec_0033.xhtml
sec_0034.xhtml
sec_0035.xhtml
sec_0036.xhtml
sec_0037.xhtml
sec_0038.xhtml
sec_0039.xhtml
sec_0040.xhtml
sec_0041.xhtml
sec_0042.xhtml
sec_0043.xhtml
sec_0044.xhtml
sec_0045.xhtml
sec_0046.xhtml
sec_0047.xhtml
sec_0048.xhtml
sec_0049.xhtml
sec_0050.xhtml
sec_0051.xhtml
sec_0052.xhtml
sec_0053.xhtml
sec_0054.xhtml
sec_0055.xhtml
sec_0056.xhtml
sec_0057.xhtml
sec_0058.xhtml
sec_0059.xhtml
sec_0060.xhtml
sec_0061.xhtml
sec_0062.xhtml
sec_0063.xhtml
sec_0064.xhtml
sec_0065.xhtml
sec_0066.xhtml
sec_0067.xhtml
sec_0068.xhtml
sec_0069.xhtml
sec_0070.xhtml
sec_0071.xhtml
sec_0072.xhtml
sec_0073.xhtml
sec_0074.xhtml
sec_0075.xhtml
sec_0076.xhtml
sec_0077.xhtml
sec_0078.xhtml
sec_0079.xhtml
sec_0080.xhtml
sec_0081.xhtml
sec_0082.xhtml
sec_0083.xhtml
sec_0084.xhtml
sec_0085.xhtml
sec_0086.xhtml
sec_0087.xhtml
sec_0088.xhtml
sec_0089.xhtml
sec_0090.xhtml
sec_0091.xhtml
sec_0092.xhtml
sec_0093.xhtml
sec_0094.xhtml
sec_0095.xhtml
sec_0096.xhtml
sec_0097.xhtml
sec_0098.xhtml
sec_0099.xhtml
sec_0100.xhtml
sec_0101.xhtml
sec_0102.xhtml
sec_0103.xhtml
sec_0104.xhtml
sec_0105.xhtml
sec_0106.xhtml
sec_0107.xhtml
sec_0108.xhtml
sec_0109.xhtml
sec_0110.xhtml
sec_0111.xhtml
sec_0112.xhtml
sec_0113.xhtml
sec_0114.xhtml
sec_0115.xhtml
sec_0116.xhtml
sec_0117.xhtml
sec_0118.xhtml
sec_0119.xhtml
sec_0120.xhtml
sec_0121.xhtml
sec_0122.xhtml
sec_0123.xhtml
sec_0124.xhtml
sec_0125.xhtml
sec_0126.xhtml
sec_0127.xhtml