8. Las vacas en el prado

Problema

“Al estudiar las ciencias, los ejercicios son más útiles que las reglas”, escribía Newton en su Aritmética Universal, y acompañaba las indicaciones teóricas con una serie de ejemplos.

Entre ellos hallamos el de los toros que pastan en el prado, que generó un tipo específico de problemas semejantes a éste:

“La hierba crece en todo el prado con igual rapidez y espesura. Se sabe que 70 vacas se la comerían en 24 días, y 30, en 60 días. ¿Cuántas vacas se comerían toda la hierba en 96 días?”.

Este problema sirvió de argumento para un cuento humorístico, que recuerda el Maestro particular de Chejov. Dos adultos, familiares del escolar a quien habían encargado resolver este problema, se esforzaban inútilmente por hallar su solución y se asombraban:

- ¡Qué extraño es el resultado! - dijo uno -. Si en 24 días 70 vacas se comen la hierba, entonces, ¿cuántas vacas se la comerán en 96 días? Claro que 1/4 de 70, es decir, 17 1/2 vacas… ¡Este es el primer absurdo! El segundo todavía más extraño, es que si 30 vacas se comen la hierba en 60 días, en 96 se la comerán 18 3/4 vacas. Además, si 70 vacas se comen la hierba en 24 días, 30 vacas emplean en ello 56 días, y no 60, como afirma el problema.

- ¿Pero tiene usted en cuenta que la hierba crece sin cesar? - preguntó otro.

La observación era razonable; la hierba crece incesantemente, circunstancia que no puede echarse en olvido, pues en ese caso no sólo no puede resolverse el problema, sino que sus mismas condiciones parecerán contradictorias.

¿Cómo debe resolverse pues, el problema?

Solución

Introduzcamos también aquí una segunda incógnita, que representará el crecimiento diario de la hierba, expresado en partes de las reservas de la misma en el prado. En una jornada hay un crecimiento de y; en 24 días será 24y. Si tomamos todo el pasto como 1, entonces, en 24 días las vacas se comerán

1 + 24y.

En una jornada las 70 vacas comerán

(1 + 24y) / 24

y una vaca (de las 70) comerá

(1 + 24y) / (24 · 70)

Siguiendo el mismo razonamiento: si 30 vacas acaban con toda la hierba del prado en 60 días, una vaca comerá en un día

1 + 60y / (30 · 60)

Pero la cantidad de hierba comida por una vaca en un solo día es igual para los dos rebaños.

Por eso

(1 + 24y) / (24 · 70) = (1 + 60y) / (30 · 60)

de donde

y = 1 / 480

Cuando se halla y (medida de crecimiento) es ya fácil determinar qué parte de la reserva inicial se come una vaca al día

(1 + 24y) / (24*70) = (1 + 24/480) / (24*70) = 1 / 1600

Por último establecemos la ecuación para la solución definitiva del problema: si el número de vacas es x, entonces,

{1 + (96 / 480)} / 96x = 1600

de donde x = 20

20 vacas se comerían toda la hierba en 96 días.

Álgebra recreativa
titlepage.xhtml
sec_0001.xhtml
sec_0002.xhtml
sec_0003.xhtml
sec_0004.xhtml
sec_0005.xhtml
sec_0006.xhtml
sec_0007.xhtml
sec_0008.xhtml
sec_0009.xhtml
sec_0010.xhtml
sec_0011.xhtml
sec_0012.xhtml
sec_0013.xhtml
sec_0014.xhtml
sec_0015.xhtml
sec_0016.xhtml
sec_0017.xhtml
sec_0018.xhtml
sec_0019.xhtml
sec_0020.xhtml
sec_0021.xhtml
sec_0022.xhtml
sec_0023.xhtml
sec_0024.xhtml
sec_0025.xhtml
sec_0026.xhtml
sec_0027.xhtml
sec_0028.xhtml
sec_0029.xhtml
sec_0030.xhtml
sec_0031.xhtml
sec_0032.xhtml
sec_0033.xhtml
sec_0034.xhtml
sec_0035.xhtml
sec_0036.xhtml
sec_0037.xhtml
sec_0038.xhtml
sec_0039.xhtml
sec_0040.xhtml
sec_0041.xhtml
sec_0042.xhtml
sec_0043.xhtml
sec_0044.xhtml
sec_0045.xhtml
sec_0046.xhtml
sec_0047.xhtml
sec_0048.xhtml
sec_0049.xhtml
sec_0050.xhtml
sec_0051.xhtml
sec_0052.xhtml
sec_0053.xhtml
sec_0054.xhtml
sec_0055.xhtml
sec_0056.xhtml
sec_0057.xhtml
sec_0058.xhtml
sec_0059.xhtml
sec_0060.xhtml
sec_0061.xhtml
sec_0062.xhtml
sec_0063.xhtml
sec_0064.xhtml
sec_0065.xhtml
sec_0066.xhtml
sec_0067.xhtml
sec_0068.xhtml
sec_0069.xhtml
sec_0070.xhtml
sec_0071.xhtml
sec_0072.xhtml
sec_0073.xhtml
sec_0074.xhtml
sec_0075.xhtml
sec_0076.xhtml
sec_0077.xhtml
sec_0078.xhtml
sec_0079.xhtml
sec_0080.xhtml
sec_0081.xhtml
sec_0082.xhtml
sec_0083.xhtml
sec_0084.xhtml
sec_0085.xhtml
sec_0086.xhtml
sec_0087.xhtml
sec_0088.xhtml
sec_0089.xhtml
sec_0090.xhtml
sec_0091.xhtml
sec_0092.xhtml
sec_0093.xhtml
sec_0094.xhtml
sec_0095.xhtml
sec_0096.xhtml
sec_0097.xhtml
sec_0098.xhtml
sec_0099.xhtml
sec_0100.xhtml
sec_0101.xhtml
sec_0102.xhtml
sec_0103.xhtml
sec_0104.xhtml
sec_0105.xhtml
sec_0106.xhtml
sec_0107.xhtml
sec_0108.xhtml
sec_0109.xhtml
sec_0110.xhtml
sec_0111.xhtml
sec_0112.xhtml
sec_0113.xhtml
sec_0114.xhtml
sec_0115.xhtml
sec_0116.xhtml
sec_0117.xhtml
sec_0118.xhtml
sec_0119.xhtml
sec_0120.xhtml
sec_0121.xhtml
sec_0122.xhtml
sec_0123.xhtml
sec_0124.xhtml
sec_0125.xhtml
sec_0126.xhtml
sec_0127.xhtml