12. Cien mil marcos por la demostración de un teorema

Cierto problema de ecuaciones indeterminadas adquirió en sus tiempos enorme popularidad debido a que al afortunado que lo resolviera con acierto se le ofrecía todo un capital ¡100 000 marcos alemanes!

El ejercicio consiste en demostrar la siguiente tesis llamada teorema o “gran proposición” de Fermat.

La suma de potencias de idéntico grado de dos números enteros no puede ser potencia de un tercer número entero. Se excluye sólo la segunda potencia, para la que es posible.

En otras palabras, hay que demostrar que la ecuación

xn + yn = zn

no tiene solución, tratándose de base entera, para n› 2.

Aclaremos lo dicho. Hemos visto que las ecuaciones

x2 + y2 = z2,

x3 + y3 + z3 = t3

tienen, tratándose de números enteros, cuantas soluciones se deseen. Sin embargo será imposible encontrar tres números enteros positivos que satisfagan la igualdad

x3 + y3 = z3.

Idéntico fracaso acompaña cuando se trata de las potencias de cuarto, quinto, sexto grados, etc. Esto es lo que afirma la “gran proposición de Fermat”.

¿Qué se exige de los aspirantes al premio? Deben demostrar esta tesis para todas las potencias que cumplen las condiciones dadas. El caso es que el teorema de Fermat no está aún demostrado y pende, por decirlo así, en el aire.

Han transcurrido tres siglos desde que fue formulado, sin embargo, los matemáticos no han logrado hasta ahora hallar su demostración.

Las figuras más eximias de esta ciencia se han ocupado del problema, mas, en el mejor de los casos,

[2]consiguieron demostrar el teorema para algunos exponentes o para ciertos grupos de ellos; pero de lo que se trata es de hallar la demostración general, para todo exponente entero.

Lo interesante del caso es que esta inaccesible demostración del teorema de Fermat, por lo visto, fue descubierta en cierta ocasión, y después se extravió. El autor del teorema, el genial matemático del siglo XVII, Pierre de Fermat, afirmaba que conocía la demostración.

Su “gran proposición”, fue escrita por él (lo mismo que toda una serie de teoremas acerca de la teoría de los números) en forma de observación en los márgenes de una obra de Diofanto, acompañándola de las siguientes palabras: “He encontrado una demostración verdaderamente asombrosa para esta proposición, pero aquí hay poco sitio para desarrollarla”.

En ningún sitio, ni en los documentos del gran matemático ni en su correspondencia, ha sido posible hallar huellas de esta demostración.

Los discípulos de Fermat han tenido que marchar por su propio camino.

He aquí los resultados de estos esfuerzos: Euler (1797) demostrar; el teorema de Fermat para potencias de tercero y cuarto grados, para las de quinto fue demostrado por Legendre (1823); para las de séptimo

[3], por Lamé y Lebesgue (1840). En 1849, Kummer demostró el teorema para una serie muy amplia de potencias y, entre otras, para todos los exponentes menores de ciento. Estos últimos trabajos rebasan con mucho la esfera de las matemáticas conocidas por Fermat, y empieza a ser problemático el hecho de que este último pudiera hallar la demostración general de su “gran proposición”. Además es posible que él se equivocara.

Quien sienta curiosidad por la historia y el estado actual del problema de Fermat, puede leer el folleto de A. Jinchin El gran teorema de Fermat. Esta publicación, obra de un especialista, está dedicada a lectores que sólo tienen conocimientos elementales de matemáticas.

Notas:

[1] Obsérvese que los coeficientes de t1 son iguales a los de x e y en la ecuación inicial 617x - 125y = 91, además, uno de los coeficientes de t1 tiene el signo contrario. Esto no es fortuito: puede demostrarse que debe suceder así siempre que los coeficientes de x y de y sean primos entre sí.

[2] Fermat (1603-1665) no era matemático profesional. Era jurista y consejero del parlamento; se dedicaba a las investigaciones matemáticas sólo en los momentos libres. No obstante, hizo una serie de descubrimientos extraordinarios, los cuales, dígase de paso, no publicaba, sino que, como se acostumbraba hacer en esa época, los daba a conocer en su correspondencia a los hombres de ciencia, amigos suyos: Pascal, Descartes, Huygens, Roberval y otros.

[3] Para los exponentes compuestos (a excepción del 4) no hace falta ninguna demostración especial: estos casos se reducen a los casos con exponentes primos
Álgebra recreativa
titlepage.xhtml
sec_0001.xhtml
sec_0002.xhtml
sec_0003.xhtml
sec_0004.xhtml
sec_0005.xhtml
sec_0006.xhtml
sec_0007.xhtml
sec_0008.xhtml
sec_0009.xhtml
sec_0010.xhtml
sec_0011.xhtml
sec_0012.xhtml
sec_0013.xhtml
sec_0014.xhtml
sec_0015.xhtml
sec_0016.xhtml
sec_0017.xhtml
sec_0018.xhtml
sec_0019.xhtml
sec_0020.xhtml
sec_0021.xhtml
sec_0022.xhtml
sec_0023.xhtml
sec_0024.xhtml
sec_0025.xhtml
sec_0026.xhtml
sec_0027.xhtml
sec_0028.xhtml
sec_0029.xhtml
sec_0030.xhtml
sec_0031.xhtml
sec_0032.xhtml
sec_0033.xhtml
sec_0034.xhtml
sec_0035.xhtml
sec_0036.xhtml
sec_0037.xhtml
sec_0038.xhtml
sec_0039.xhtml
sec_0040.xhtml
sec_0041.xhtml
sec_0042.xhtml
sec_0043.xhtml
sec_0044.xhtml
sec_0045.xhtml
sec_0046.xhtml
sec_0047.xhtml
sec_0048.xhtml
sec_0049.xhtml
sec_0050.xhtml
sec_0051.xhtml
sec_0052.xhtml
sec_0053.xhtml
sec_0054.xhtml
sec_0055.xhtml
sec_0056.xhtml
sec_0057.xhtml
sec_0058.xhtml
sec_0059.xhtml
sec_0060.xhtml
sec_0061.xhtml
sec_0062.xhtml
sec_0063.xhtml
sec_0064.xhtml
sec_0065.xhtml
sec_0066.xhtml
sec_0067.xhtml
sec_0068.xhtml
sec_0069.xhtml
sec_0070.xhtml
sec_0071.xhtml
sec_0072.xhtml
sec_0073.xhtml
sec_0074.xhtml
sec_0075.xhtml
sec_0076.xhtml
sec_0077.xhtml
sec_0078.xhtml
sec_0079.xhtml
sec_0080.xhtml
sec_0081.xhtml
sec_0082.xhtml
sec_0083.xhtml
sec_0084.xhtml
sec_0085.xhtml
sec_0086.xhtml
sec_0087.xhtml
sec_0088.xhtml
sec_0089.xhtml
sec_0090.xhtml
sec_0091.xhtml
sec_0092.xhtml
sec_0093.xhtml
sec_0094.xhtml
sec_0095.xhtml
sec_0096.xhtml
sec_0097.xhtml
sec_0098.xhtml
sec_0099.xhtml
sec_0100.xhtml
sec_0101.xhtml
sec_0102.xhtml
sec_0103.xhtml
sec_0104.xhtml
sec_0105.xhtml
sec_0106.xhtml
sec_0107.xhtml
sec_0108.xhtml
sec_0109.xhtml
sec_0110.xhtml
sec_0111.xhtml
sec_0112.xhtml
sec_0113.xhtml
sec_0114.xhtml
sec_0115.xhtml
sec_0116.xhtml
sec_0117.xhtml
sec_0118.xhtml
sec_0119.xhtml
sec_0120.xhtml
sec_0121.xhtml
sec_0122.xhtml
sec_0123.xhtml
sec_0124.xhtml
sec_0125.xhtml
sec_0126.xhtml
sec_0127.xhtml