12. El número “e”

El 2,718… obtenido, número que desempeña en las matemáticas superiores un papel trascendental (quizás tan importante como el famoso ) tiene un signo especial de expresión: la e. Es un número irracional que no puede ser expresado con ninguna cifra exacta, pero se calcula con la aproximación deseada, mediante la siguiente serie:

Por el ejemplo de capitalización expuesto puede verse que el número ees el límite de la expresión:

para un incremento ilimitado de n.

Por numerosas razones, que no procede explicar aquí, es de suma conveniencia tomar el número e como base del sistema de logaritmos. Tales tablas (de “logaritmos naturales”) existen y se aplican en gran escala en, la ciencia y la técnica. Aquellas grandes tablas de 48, 61, 102 y 260 cifras, a las que nos hemos referido más arriba, tienen precisamente como base el número e. Con frecuencia el número e aparece allí donde menos se sospecha.

Supongamos, por ejemplo, el siguiente problema:

¿En cuántas partes debe dividirse el número a para que el producto de todas ellas tenga el máximo valor?

Ya sabemos que cuando la suma de factores es constante, su producto será el mayor cuando los factores sean iguales entre sí. Pero, ¿en cuántas partes hay que dividir a? ¿En dos, en tres, en diez? Las matemáticas superiores enseñan que se obtiene el máximo producto cuando los factores adquieren valores lo más cercanos posibles al del número e. Por ejemplo: 10 debe dividirse en tal cantidad de partes iguales que cada una de ellas se aproxime cuanto pueda a 2,718… Para ello hay que encontrar el cociente

10/2,718… = 3,678…

Mas, como no es posible dividir en 3,678… partes iguales hay que hacerlo por la cifra entera más próxima, por 4, y obtendremos el producto mayor los sumandos de 10, si éstos son iguales a 10/4 es decir, 2,5.

Quiere decirse que:

(2,5)4 = 39,0625

es el máximo producto que puede obtenerse multiplicando los sumandos iguales del número 10. En efecto, dividiendo 10 en 3 ó en 5 partes iguales, los productos de éstas son menores:

(10/3)3 = 37

(10/5)5 = 32

Para conseguir el máximo producto de las partes iguales del número 20, éste debe dividirse en 7 partes, puesto que

20/2,718… = 7,36› 7.

Para obtener el máximo producto de las partes iguales del número 50, éste debe dividirse en 18 partes, y 100 en 37, puesto que

50/2,718… = 18,4,

100/2,718… = 36, 8.

El número e desempeña un enorme papel en las matemáticas, la física, la astronomía y en otras ciencias. Veamos algunos casos en cuyo análisis matemático hay que valerse de este número (la cantidad de casos se puede ampliar indefinidamente):

la fórmula barométrica (la disminución de la presión con la altura);

la fórmula de Euler;

la ley del enfriamiento de los cuerpos;

la desintegración radiactiva y la edad de la Tierra;

las oscilaciones libres del péndulo;

la fórmula de Tsiolkovski para la velocidad del cohete;

los fenómenos oscilatorios en un circuito radiofónico;

el crecimiento de las células.

Álgebra recreativa
titlepage.xhtml
sec_0001.xhtml
sec_0002.xhtml
sec_0003.xhtml
sec_0004.xhtml
sec_0005.xhtml
sec_0006.xhtml
sec_0007.xhtml
sec_0008.xhtml
sec_0009.xhtml
sec_0010.xhtml
sec_0011.xhtml
sec_0012.xhtml
sec_0013.xhtml
sec_0014.xhtml
sec_0015.xhtml
sec_0016.xhtml
sec_0017.xhtml
sec_0018.xhtml
sec_0019.xhtml
sec_0020.xhtml
sec_0021.xhtml
sec_0022.xhtml
sec_0023.xhtml
sec_0024.xhtml
sec_0025.xhtml
sec_0026.xhtml
sec_0027.xhtml
sec_0028.xhtml
sec_0029.xhtml
sec_0030.xhtml
sec_0031.xhtml
sec_0032.xhtml
sec_0033.xhtml
sec_0034.xhtml
sec_0035.xhtml
sec_0036.xhtml
sec_0037.xhtml
sec_0038.xhtml
sec_0039.xhtml
sec_0040.xhtml
sec_0041.xhtml
sec_0042.xhtml
sec_0043.xhtml
sec_0044.xhtml
sec_0045.xhtml
sec_0046.xhtml
sec_0047.xhtml
sec_0048.xhtml
sec_0049.xhtml
sec_0050.xhtml
sec_0051.xhtml
sec_0052.xhtml
sec_0053.xhtml
sec_0054.xhtml
sec_0055.xhtml
sec_0056.xhtml
sec_0057.xhtml
sec_0058.xhtml
sec_0059.xhtml
sec_0060.xhtml
sec_0061.xhtml
sec_0062.xhtml
sec_0063.xhtml
sec_0064.xhtml
sec_0065.xhtml
sec_0066.xhtml
sec_0067.xhtml
sec_0068.xhtml
sec_0069.xhtml
sec_0070.xhtml
sec_0071.xhtml
sec_0072.xhtml
sec_0073.xhtml
sec_0074.xhtml
sec_0075.xhtml
sec_0076.xhtml
sec_0077.xhtml
sec_0078.xhtml
sec_0079.xhtml
sec_0080.xhtml
sec_0081.xhtml
sec_0082.xhtml
sec_0083.xhtml
sec_0084.xhtml
sec_0085.xhtml
sec_0086.xhtml
sec_0087.xhtml
sec_0088.xhtml
sec_0089.xhtml
sec_0090.xhtml
sec_0091.xhtml
sec_0092.xhtml
sec_0093.xhtml
sec_0094.xhtml
sec_0095.xhtml
sec_0096.xhtml
sec_0097.xhtml
sec_0098.xhtml
sec_0099.xhtml
sec_0100.xhtml
sec_0101.xhtml
sec_0102.xhtml
sec_0103.xhtml
sec_0104.xhtml
sec_0105.xhtml
sec_0106.xhtml
sec_0107.xhtml
sec_0108.xhtml
sec_0109.xhtml
sec_0110.xhtml
sec_0111.xhtml
sec_0112.xhtml
sec_0113.xhtml
sec_0114.xhtml
sec_0115.xhtml
sec_0116.xhtml
sec_0117.xhtml
sec_0118.xhtml
sec_0119.xhtml
sec_0120.xhtml
sec_0121.xhtml
sec_0122.xhtml
sec_0123.xhtml
sec_0124.xhtml
sec_0125.xhtml
sec_0126.xhtml
sec_0127.xhtml