7. Ciclista supersticioso
Hasta hace poco cada bicicleta debía tener una matrícula igual que el automóvil. Esta matrícula tenía seis guarismos.
Cierta persona muy supersticiosa adquirió una bicicleta con el propósito de aprender a manejarla. Cuando supo que a cierta avería, propia de estas máquinas, se le denomina “ocho”, se creyó condenado a algún contratiempo si en el número de su matrícula figuraba algún ocho. Al ir por ésta, le tranquilizó la siguiente reflexión: cualquiera que sea el número de la matrícula, debe formarse con guarismos del 0 al 9. De éstos, tan sólo el 8 es “aciago”, por lo cual, de cada 10 casos existe uno en que la matrícula resulte “infausta”. ¿Es acertada esta deducción?
El número de las matrículas se compone de seis guarismos. Por lo tanto, habrá 999999 diferentes, desde el 000 001, 000 002, etc. hasta el 999 999. Calculemos ahora cuántos números “afortunados” podríamos encontrar. El lugar de las unidades del número puede ser ocupado por alguna de las nueve cifras “felices”: 0, 1, 2, 3, 4, 5, 6, 7, 9.
En el segundo lugar también puede encontrarse una de estas cifras. De ahí que las dos primeras cifras den lugar a 9 • 9 = 92 combinaciones “favorables”. A cada una de estas combinaciones puede agregarse una tercera cifra de las nueve “bienhadadas”; por lo tanto las combinaciones “felices” de tres cifras llegan a 92 · 9 = 93.
De esta misma manera se deduce que el número de combinaciones “satisfactorias”, compuestas de seis cifras, es igual a 96.
No obstante, hay que tener en cuenta que este número comprende la combinación 000 000, que no sirve para matrícula. Por consiguiente, la cantidad de matrículas “afortunadas” es de 96-1 = 531 440, lo que constituye algo más del 53% del total de números posibles, y no el 90%, como suponía el ciclista en cuestión.
El lector se convencerá de que en la serie de números con siete cifras, hay más “infaustos” que “bienhadados”.