7. Ciclista supersticioso

Problema

Hasta hace poco cada bicicleta debía tener una matrícula igual que el automóvil. Esta matrícula tenía seis guarismos.

Cierta persona muy supersticiosa adquirió una bicicleta con el propósito de aprender a manejarla. Cuando supo que a cierta avería, propia de estas máquinas, se le denomina “ocho”, se creyó condenado a algún contratiempo si en el número de su matrícula figuraba algún ocho. Al ir por ésta, le tranquilizó la siguiente reflexión: cualquiera que sea el número de la matrícula, debe formarse con guarismos del 0 al 9. De éstos, tan sólo el 8 es “aciago”, por lo cual, de cada 10 casos existe uno en que la matrícula resulte “infausta”. ¿Es acertada esta deducción?

Solución

El número de las matrículas se compone de seis guarismos. Por lo tanto, habrá 999999 diferentes, desde el 000 001, 000 002, etc. hasta el 999 999. Calculemos ahora cuántos números “afortunados” podríamos encontrar. El lugar de las unidades del número puede ser ocupado por alguna de las nueve cifras “felices”: 0, 1, 2, 3, 4, 5, 6, 7, 9.

En el segundo lugar también puede encontrarse una de estas cifras. De ahí que las dos primeras cifras den lugar a 9 9 = 92 combinaciones “favorables”. A cada una de estas combinaciones puede agregarse una tercera cifra de las nueve “bienhadadas”; por lo tanto las combinaciones “felices” de tres cifras llegan a 92 · 9 = 93.

De esta misma manera se deduce que el número de combinaciones “satisfactorias”, compuestas de seis cifras, es igual a 96.

No obstante, hay que tener en cuenta que este número comprende la combinación 000 000, que no sirve para matrícula. Por consiguiente, la cantidad de matrículas “afortunadas” es de 96-1 = 531 440, lo que constituye algo más del 53% del total de números posibles, y no el 90%, como suponía el ciclista en cuestión.

El lector se convencerá de que en la serie de números con siete cifras, hay más “infaustos” que “bienhadados”.

Álgebra recreativa
titlepage.xhtml
sec_0001.xhtml
sec_0002.xhtml
sec_0003.xhtml
sec_0004.xhtml
sec_0005.xhtml
sec_0006.xhtml
sec_0007.xhtml
sec_0008.xhtml
sec_0009.xhtml
sec_0010.xhtml
sec_0011.xhtml
sec_0012.xhtml
sec_0013.xhtml
sec_0014.xhtml
sec_0015.xhtml
sec_0016.xhtml
sec_0017.xhtml
sec_0018.xhtml
sec_0019.xhtml
sec_0020.xhtml
sec_0021.xhtml
sec_0022.xhtml
sec_0023.xhtml
sec_0024.xhtml
sec_0025.xhtml
sec_0026.xhtml
sec_0027.xhtml
sec_0028.xhtml
sec_0029.xhtml
sec_0030.xhtml
sec_0031.xhtml
sec_0032.xhtml
sec_0033.xhtml
sec_0034.xhtml
sec_0035.xhtml
sec_0036.xhtml
sec_0037.xhtml
sec_0038.xhtml
sec_0039.xhtml
sec_0040.xhtml
sec_0041.xhtml
sec_0042.xhtml
sec_0043.xhtml
sec_0044.xhtml
sec_0045.xhtml
sec_0046.xhtml
sec_0047.xhtml
sec_0048.xhtml
sec_0049.xhtml
sec_0050.xhtml
sec_0051.xhtml
sec_0052.xhtml
sec_0053.xhtml
sec_0054.xhtml
sec_0055.xhtml
sec_0056.xhtml
sec_0057.xhtml
sec_0058.xhtml
sec_0059.xhtml
sec_0060.xhtml
sec_0061.xhtml
sec_0062.xhtml
sec_0063.xhtml
sec_0064.xhtml
sec_0065.xhtml
sec_0066.xhtml
sec_0067.xhtml
sec_0068.xhtml
sec_0069.xhtml
sec_0070.xhtml
sec_0071.xhtml
sec_0072.xhtml
sec_0073.xhtml
sec_0074.xhtml
sec_0075.xhtml
sec_0076.xhtml
sec_0077.xhtml
sec_0078.xhtml
sec_0079.xhtml
sec_0080.xhtml
sec_0081.xhtml
sec_0082.xhtml
sec_0083.xhtml
sec_0084.xhtml
sec_0085.xhtml
sec_0086.xhtml
sec_0087.xhtml
sec_0088.xhtml
sec_0089.xhtml
sec_0090.xhtml
sec_0091.xhtml
sec_0092.xhtml
sec_0093.xhtml
sec_0094.xhtml
sec_0095.xhtml
sec_0096.xhtml
sec_0097.xhtml
sec_0098.xhtml
sec_0099.xhtml
sec_0100.xhtml
sec_0101.xhtml
sec_0102.xhtml
sec_0103.xhtml
sec_0104.xhtml
sec_0105.xhtml
sec_0106.xhtml
sec_0107.xhtml
sec_0108.xhtml
sec_0109.xhtml
sec_0110.xhtml
sec_0111.xhtml
sec_0112.xhtml
sec_0113.xhtml
sec_0114.xhtml
sec_0115.xhtml
sec_0116.xhtml
sec_0117.xhtml
sec_0118.xhtml
sec_0119.xhtml
sec_0120.xhtml
sec_0121.xhtml
sec_0122.xhtml
sec_0123.xhtml
sec_0124.xhtml
sec_0125.xhtml
sec_0126.xhtml
sec_0127.xhtml