Glóbulos de quarks
La materia corriente no es muy densa. El agua, por ejemplo, tiene una densidad de un gramo por centímetro cúbico. Esto se debe a que los electrones mantienen a la parte verdaderamente densa del átomo, el protón del núcleo, separada de los demás protones.
Algunos elementos contienen núcleos formados por varios protones y electrones enlazados. Los electrones mantienen aislados estos núcleos, pero aun así, la materia es mucho más densa que el agua. El metal osmio tiene una densidad de 22 gramos por centímetro cúbico, por ejemplo.
La materia del núcleo de una estrella como el Sol está sometida a tanta temperatura y presión que los átomos se rompen y los núcleos se mueven libremente, acercándose unos a otros mucho más de lo que pueden hacerlo en la materia corriente. Esta materia es mucho más densa que cualquier otra en la Tierra y se conoce como «materia degenerada».
Cuando una estrella explota, parte de ella puede colapsarse en una bola de materia degenerada y se convierte en una «enana blanca». En ese caso, su tamaño, por lo general, es menor que el de la Tierra, pero contiene tanta masa como el Sol. Imagínese lo densa que debe de ser toda esta masa comprimida en el espacio que ocupa un planeta pequeño.
Con todo, esto no es lo esencial. Incluso en una enana blanca los electrones mantienen separados los núcleos en cierto grado. Sin embargo, si la enana blanca es lo bastante grande y tiene la masa suficiente, los núcleos se colapsan hasta el punto de que los electrones no los pueden retener. Los protones se convierten en neutrones. Los neutrones no tienen carga eléctrica y no se repelen entre sí. Por tanto, todos los neutrones se agrupan hasta que se tocan y el resultado es una «estrella de neutrones».
Una estrella de neutrones tiene la densidad de un neutrón, que asciende a 15 billones de kilogramos por centímetro cúbico. Una estrella de neutrones puede comprimir la masa de un sol en un pequeño globo de unos 14 kilómetros de ancho. Estas estrellas de neutrones fueron descubiertas en 1969.
Pero los neutrones no son partículas sencillas. Cada uno está compuesto por tres quarks y existe la posibilidad de que, a medida que los neutrones se comprimen cada vez más, se descompongan en los quarks integrantes que, a su vez, se pueden comprimir todavía más y producir una estrella todavía más densa. Esta estrella de quarks sería el material más denso posible de materia. (Incluso los quarks se pueden descomponer y, cuando sucede, la estrella se limita a reducirse hasta la nada aunque mantiene su masa. Se transforma en un «agujero negro»).
Podemos detectar las estrellas de neutrones porque emiten ráfagas minúsculas de radioondas mientras rotan a gran velocidad. Hay algunas estrellas de neutrones que giran a tanta velocidad que emiten ráfagas con una frecuencia de milésimas de segundo. A semejante velocidad de giro, incluso una estrella de neutrones con toda su densidad apenas puede mantenerse íntegra.
Los físicos noruegos T. Overgard y E. Ostgaard creen que si pueden encontrar una estrella de neutrones que gire a menos de 0,5 milésimas de segundo, no sería una estrella de neutrones sino una estrella de quarks.
Brian McCusker, de la Universidad de Sydney en Australia cree que si las estrellas de quarks existiesen, auténticamente éstos serían estables.
En realidad, nadie ha detectado un quark en la Tierra y algunos científicos piensan que es imposible hacerlo. Por otro lado, puede que una vez que una estrella de quarks se forme se desprenda en fracciones a medida que gira. El resultado sería «glóbulos de quarks», cada uno formado por cientos de ellos.
Tales glóbulos de quarks pueden vagar por el Universo en gran cantidad y algunos pueden caer ocasionalmente en la Tierra. Una vez que un globo choca contra la atmósfera terrestre se puede descomponer en tripletes, formando cada uno de ellos un neutrón o un protón. Por otro lado puede que algún quark aislado quedara libre y pasaría a integrar los rayos cósmicos. Los quarks individuales contendrían cargas eléctricas fraccionarias, algo que no contiene ninguna otra partícula, y se detectarían gracias a ello. En varias ocasiones se ha informado sobre partículas con cargas eléctricas fraccionarias, pero ninguna de ellas ha tenido confirmación.
Así que la «caza de quarks» continúa.
Pero si nunca hemos detectado un quark, ¿cómo sabemos que existen efectivamente?
La respuesta es que hay tantos aspectos de la física nuclear que se explican con la existencia de los quarks y en sus reacciones entre sí de determinada forma que es casi imposible negar su existencia. Sin embargo, independientemente de la sensatez de esta idea, a los físicos les gustaría detectar uno.