Dos homínidos, dos dietas
Entre 1,5 y 2 millones de años atrás, al menos dos tipos de «homínidos» vagaban por las praderas del este y del sur de África. Eran criaturas que caminaban erguidas y se parecían a los seres humanos más que los simios. Uno de ellos se extinguió y el otro sobrevivió para convertirse en el antepasado de los seres humanos actuales. En 1990, una arqueóloga de la Universidad de Ciudad del Cabo, en Sudáfrica, Julia Lee-Thorp, lanzó una interesante teoría sobre su posible causa.
De los dos homínidos, uno era el Australopithecus robustas y el otro el Homo habilis, y se parecían mucho, a excepción de ciertas diferencias en la estructura del cráneo. De los dos, el Australopitecus robustus era algo mayor y más robusto, pero no mucho. El Homo habilis puede que tuviera el cerebro ligeramente mayor en proporción a su tamaño, pero no mucho más. Las diferencias físicas no parecen ser lo suficientemente grandes como para justificar por qué el Australopithecus robustus se extinguió y Homo habilis se convirtió en antepasado del hombre. Entonces, ¿por qué sucedió?
¡La dieta! Al final, la supervivencia pudo haber dependido de la alimentación, pero ¿cómo podemos saber lo que comían estos homínidos primitivos?
Para empezar, cualquier cosa que esté viva, o lo haya estado alguna vez, contiene átomos de carbono, y éstos se presentan en dos variedades estables (o «isótopos»): carbono 12 y carbono 13. El carbono 12 contiene seis protones y seis neutrones en el núcleo, doce partículas en total. El carbono 13 contiene seis protones y siete neutrones, trece partículas en total.
El comportamiento químico del carbono no depende de su núcleo, sino de los electrones que se sitúan en el exterior, y los dos tipos de átomos de carbono contienen exactamente seis electrones. Esto quiere decir que el carbono 12 y el carbono 13 actúan exactamente igual desde el punto de vista químico. Lo que uno hace, lo hace el otro; donde uno va, va el otro. Esto a su vez significa que cualquier porción de carbono que manejemos contiene una proporción de ambos, y exactamente la misma. Por cada noventa átomos de carbono 12, encontraremos uno de carbono 13.
Pero en esta imagen tan simple hay una pega. Aunque los dos tipos de carbono hacen el mismo trabajo, el carbono 13, al tener una partícula extra, es algo más pesado, y se mueve un poco más despacio. Esto significa que, en cualquier proceso químico, puede resultar que el carbono 12 es ligerísimamente más abundante de lo normal, o ligerísimamente menos, según el proceso. Además, los químicos han aprendido a analizar los átomos de carbono con tanta precisión que pueden medir la proporción de carbono 12 y 13 lo bastante bien como para descubrir estos cambios tan mínimos.
Todas las plantas absorben dióxido de carbono del aire y lo ponen en circulación a través de una serie de complicados procesos químicos que terminan incorporando algunos de estos átomos de carbono a sus tejidos. No resulta sorprendente que distintos tipos de plantas hagan esto de forma ligeramente diferente y concluyan cada uno con una proporción distinta de carbono 12 y carbono 13. Se trata de una diferencia mínima, por supuesto, pero a partir de la proporción los químicos pueden identificar diferentes tipos de plantas.
Cuando los animales se alimentan de plantas (o de otros animales), los átomos de carbono experimentan procesos relativamente sencillos al mudar del tejido vegetal al animal, o de un tipo de tejido animal a otro. Por esa razón, la proporción de carbono 12 y carbono 13 permanece igual que en las plantas o animales de los que se alimentaron.
Los huesos contienen una proteína llamada «colágeno» que, por supuesto, contiene átomos de carbono y pueden ser utilizados para la determinación de esta proporción. La pega es que a medida que los huesos envejecen, se pierde el colágeno. Los huesos de las zonas tropicales que tienen más de diez mil años no se pueden utilizar para medir la proporción: Lee-Thorp buscó un material más estable, y lo encontró en los dientes. El esmalte de los dientes es el tejido más duro del cuerpo de los mamíferos. Contiene cantidades mínimas de proteína, pero se mantienen bien fijadas y permanecen casi eternamente. Puede que los huesos que cuentan 1,5 millones de años hayan perdido sus proteínas, pero los dientes de esa edad pueden seguir facilitando las proporciones de carbono 12 y 13 necesarias. Las teorías no son certeras. En realidad, los procesos en el cuerpo del animal pueden introducir sus propios cambios, o éstos se pueden producir lentamente después de la muerte. No obstante, los dientes del Australopithecus robustus indican que este homínido se alimentaba de frutas, nueces y hierbas. No hay nada malo en una dieta de este tipo, pero el Homo habilis era omnívoro, o sea, dispuesto a comer de todo.
Ahora bien, cualquier restricción en la dieta plantea más problemas de supervivencia. Si se depende demasiado un determinado tipo de alimento se está a merced de sus reservas. Por el contrario, si se puede comer cualquier cosa a la vista, no es probable que todo empiece a escasear al mismo tiempo. Los animales omnívoros como ratas, cerdos y seres humanos tienen una gran ventaja. Parece que el Homo habilis aventajaba en esto al Australopitecus robustus y que ésta es la razón por la cual el primero sobrevivió y el otro no.