Un giro minúsculo de la luz

Uno de los mayores enigmas de la astronomía es el «misterio de la masa perdida» y en 1990, algunos astrónomos informaron de que en cierto modo se podía hacer visible esta masa.

La masa perdida corresponde a objetos del Universo que no se pueden ver ni detectar de otra manera, pero los astrónomos aseguran que existe. No saben lo que es o lo que podría ser, pero, sin embargo, están seguros de que está ahí.

¿Cómo? Pues bien, los astrónomos han estudiado un gran número de galaxias. También han estudiado las estrellas y otros objetos brillantes que han observado en su interior. A partir de sus observaciones pueden calcular la masa (o sea, la cantidad total de materia) de la galaxia. Y afirman que el 90% de su masa se concentra en una pequeña región del centro de la Galaxia.

Basándose en esto, pueden apreciar asimismo el movimiento rotatorio de la Galaxia. Las estrellas próximas al centro deberían moverse deprisa; las que están más lejos, más despacio (éste es el modo en que se mueven nuestros planetas en el Sistema Solar). El único problema es que una galaxia tras otra se niega a moverse de esta manera. Las estrellas lejanas se mueven a la misma velocidad que las más cercanas. La única manera de explicar esto es asumir que hay masa adicional en los alrededores de la galaxia, masa que no podemos detectar.

¿Se trata de nubes formadas por cuerpos pequeños, demasiado pequeños para brillar pero con una masa que cada uno añade? ¿Pueden ser cantidades ingentes de partículas subatómicas con masa que nunca hemos detectado y de las que por el momento no sabemos nada? No lo sabemos, pero hay una causa.

No es sólo una cuestión de galaxias que giran. Las galaxias se organizan en cúmulos de todos los tamaños; algunos contienen docenas de ellas, como el nuestro, mientras que otros contienen cientos o incluso miles de galaxias.

Cuando los astrónomos observan los cúmulos, pueden medir la masa de cada una de las galaxias y, por tanto, la fuerza de la atracción gravitatoria que ejercen unas sobre otras. También pueden calcular la velocidad a la que cada galaxia se mueve dentro del cúmulo. Sin embargo, en todos los casos, la cantidad de gravitación que ejercen las galaxias sobre las demás no parece ser suficiente para evitar que las galaxias se muevan cada una por su cuenta, teniendo en cuenta la velocidad a la que se están desplazando.

La única manera en que pueden permanecer juntas es suponer que hay más masa y, por lo tanto, más atracción gravitatoria de la que se puede deducir de la materia que vemos. Cuanto mayor es el cúmulo, más masa extra tiene que contener.

Algunos astrónomos piensan que la masa perdida puede ascender al 90% de toda la masa del Universo y es muy frustrante que no podamos detectarla ni caracterizarla.

¿Hay algo que pueda componer la masa para darnos alguna pista de su localización? Esto ya supondría algo. En teoría lo hay.

Ya en 1916, Albert Einstein, utilizando su teoría general de la relatividad, predijo que los rayos de luz se desviarían al pasar cerca de objetos con mucha masa que los sometían a un campo gravitatorio. La desviación dependería de la masa y de su proximidad a la luz, y Einstein calculó exactamente cómo ocurriría todo. Su predicción se verificó en 1919 y muchísimas otras veces más desde entonces, de muchas maneras diferentes. Todos los astrónomos están convencidos de que la luz se desvía de manera apreciable cuando pasa cerca de un cuerpo con mucha masa.

Supongamos que estamos estudiando una galaxia muy remota, que se sitúe lo más lejos posible que podamos detectar. Su luz viaja hacia nosotros por un espacio de millones de años luz y, al hacerlo, puede atravesar un cúmulo denso de galaxias. El campo gravitatorio de este cúmulo puede provocar un giro minúsculo en este rayo de luz difuso de la galaxia remota.

Los astrónomos de los laboratorios AT &T Bell de Murray Hill (Nueva Jersey) y del Observatorio Nacional de Astronomía Óptica de Tucson (Arizona), dirigidos por J. Anthony Tyson, anunciaron el 18 de enero de 1990 que habían logrado exactamente eso, utilizando unos «dispositivos de carga acoplada» nuevos y muy avanzados, junto con programas informáticos especialmente diseñados, con los que se analizaron los resultados.

A partir del giro minúsculo de la luz se puede deducir, según ellos, dónde se localiza exactamente la masa perdida dentro de la galaxia. Es probable que por medio de esta técnica se pueda por fin cartografiar el Universo, por decirlo así, y determinar la distribución de la masa perdida, más densa en unos puntos y menos en otros. Esto puede proporcionarnos pistas sobre la naturaleza de dicha masa, lo que, a su vez, podría explicar gran cantidad de cosas sobre el Universo que por el momento desconocemos.

Sin embargo, no podemos lanzarnos con demasiado ímpetu. La nueva técnica se sitúa en el límite de lo posible y deberá ser comprobada por otros. De hecho, algunos astrónomos ya han expresado sus dudas de que se pueda confiar plenamente en la nueva técnica.

No obstante es tal la frustración científica sobre el «misterio de la masa perdida» que es seguro que incluso el mínimo avance hacia una posible solución producirá una gran excitación.

Fronteras II
cubierta.xhtml
sinopsis.xhtml
titulo.xhtml
info.xhtml
dedicatoria.xhtml
IndiceAutor.xhtml
Introduccion.xhtml
Parte1.xhtml
Ensayo1.xhtml
Ensayo2.xhtml
Ensayo3.xhtml
Ensayo4.xhtml
Ensayo5.xhtml
Ensayo6.xhtml
Ensayo7.xhtml
Ensayo8.xhtml
Ensayo9.xhtml
Ensayo10.xhtml
Ensayo11.xhtml
Ensayo12.xhtml
Ensayo13.xhtml
Ensayo14.xhtml
Ensayo15.xhtml
Ensayo16.xhtml
Ensayo17.xhtml
Ensayo18.xhtml
Ensayo19.xhtml
Ensayo20.xhtml
Ensayo21.xhtml
Ensayo22.xhtml
Ensayo23.xhtml
Ensayo24.xhtml
Ensayo25.xhtml
Ensayo26.xhtml
Ensayo27.xhtml
Ensayo28.xhtml
Ensayo29.xhtml
Ensayo30.xhtml
Ensayo31.xhtml
Ensayo32.xhtml
Ensayo33.xhtml
Parte2.xhtml
Ensayo34.xhtml
Ensayo35.xhtml
Ensayo36.xhtml
Ensayo37.xhtml
Ensayo38.xhtml
Ensayo39.xhtml
Ensayo40.xhtml
Ensayo41.xhtml
Ensayo42.xhtml
Ensayo43.xhtml
Ensayo44.xhtml
Ensayo45.xhtml
Ensayo46.xhtml
Ensayo47.xhtml
Ensayo48.xhtml
Ensayo49.xhtml
Ensayo50.xhtml
Ensayo51.xhtml
Ensayo52.xhtml
Ensayo53.xhtml
Ensayo54.xhtml
Ensayo55.xhtml
Ensayo56.xhtml
Ensayo57.xhtml
Ensayo58.xhtml
Ensayo59.xhtml
Ensayo60.xhtml
Ensayo61.xhtml
Ensayo62.xhtml
Ensayo63.xhtml
Ensayo64.xhtml
Parte 3.xhtml
Ensayo65.xhtml
Ensayo66.xhtml
Ensayo67.xhtml
Ensayo68.xhtml
Ensayo69.xhtml
Ensayo70.xhtml
Ensayo71.xhtml
Ensayo72.xhtml
Ensayo73.xhtml
Ensayo74.xhtml
Ensayo75.xhtml
Ensayo76.xhtml
Ensayo77.xhtml
Ensayo78.xhtml
Ensayo79.xhtml
Ensayo80.xhtml
Ensayo81.xhtml
Ensayo82.xhtml
Ensayo83.xhtml
Ensayo84.xhtml
Ensayo85.xhtml
Ensayo86.xhtml
Ensayo87.xhtml
Ensayo88.xhtml
Ensayo89.xhtml
Parte4.xhtml
Ensayo90.xhtml
Ensayo91.xhtml
Ensayo92.xhtml
Ensayo93.xhtml
Ensayo94.xhtml
Ensayo95.xhtml
Ensayo96.xhtml
Ensayo97.xhtml
Ensayo98.xhtml
Ensayo99.xhtml
Ensayo100.xhtml
Ensayo101.xhtml
Ensayo102.xhtml
Ensayo103.xhtml
Ensayo104.xhtml
Ensayo105.xhtml
Ensayo106.xhtml
Ensayo107.xhtml
Ensayo108.xhtml
Ensayo109.xhtml
Ensayo110.xhtml
Ensayo111.xhtml
Ensayo112.xhtml
Ensayo113.xhtml
Ensayo114.xhtml
Ensayo115.xhtml
Ensayo116.xhtml
Ensayo117.xhtml
Ensayo118.xhtml
Ensayo119.xhtml
Ensayo120.xhtml
Ensayo121.xhtml
Ensayo122.xhtml
Ensayo123.xhtml
Ensayo124.xhtml
autor.xhtml