8. Un problema que parece fácil

Un recipiente de treinta vasos de capacidad está lleno de agua. Ponemos un vaso debajo del grifo que tiene el recipiente, abrimos y, reloj en mano, observamos cuánto tiempo tarda el vaso en llenarse hasta los bordes. Supongamos que tarda medio minuto. Nos planteamos la pregunta: ¿cuánto tiempo tardará el recipiente en vaciarse por completo, si dejamos el grifo abierto?

Parece que se trata de un problema aritmético para niños pequeños. Si el agua que cabe un vaso tarda en salir 1/2 minuto, los 30 vasos que caben en el recipiente tardarán en salir 15 minutos.

Pero si ustedes hacen este experimento verán que el recipiente no tarda en vaciarse un cuarto de hora, sino media hora.

¿Qué ocurre?

El cálculo que hemos hecho es fácil pero erróneo. El agua no sale con la misma velocidad desde el principio hasta el fin. Después de salir el primer vaso, el chorro de agua tendrá ya menos presión, puesto que el nivel dentro del recipiente habrá bajado, por lo tanto, el segundo vaso tardará más de medio minuto en llenarse. El tercero saldrá aún más despacio y así sucesivamente.

La velocidad con que un líquido sale por el orificio de un recipiente abierto depende directamente de la altura de la columna de agua que hay sobre dicho orificio. El genial Torricelli, discípulo de Galileo, fue el primero que estableció esta dependencia expresándole con la sencilla fórmula siguiente:

v2 = 2gh

donde v es la velocidad de salida, g la aceleración de la gravedad y h la altura del nivel del líquido sobre el orificio.

Figura 58. ¿Qué recipiente se vaciará antes, el que tiene mercurio o el que tiene alcohol? El nivel de los líquidos es igual en los dos recipientes.

De esta fórmula se deduce que la velocidad con que sale el chorro no depende en absoluto de la densidad del líquido, es decir, el alcohol, a pesar de ser ligero, y el mercurio, a pesar de ser tan pesado, saldrán a la misma velocidad si están a un mismo nivel (Figura 58). Según esta fórmula, en la Luna, donde la gravedad es seis veces menor que en la Tierra, el vaso del problema anterior tardaría en llenarse dos veces y media más que en nuestro planeta.

Pero volvamos a nuestro problema. Si después de haber salido del recipiente 20 vasos de agua el nivel de ésta en aquél (a partir del orificio del grifo) ha bajado hasta la cuarta parte, el vaso 21° se llenará dos veces más despacio que el 1°. Y si después desciende el nivel hasta la novena parte, los últimos vasos tardarán tres veces más tiempo en llenarse que el primero. Cuando el recipiente está casi vacío el agua sale muy despacio. Resolviendo este problema por los procedimientos que se estudian en matemáticas superiores se puede demostrar que el tiempo que tarda el recipiente en vaciarse por completo es el doble del que tardaría en salir la misma cantidad de líquido si el nivel inicial permaneciera constante.

Física recreativa II
titlepage.xhtml
sec_0001.xhtml
sec_0002.xhtml
sec_0003.xhtml
sec_0004.xhtml
sec_0005.xhtml
sec_0006.xhtml
sec_0007.xhtml
sec_0008.xhtml
sec_0009.xhtml
sec_0010.xhtml
sec_0011.xhtml
sec_0012.xhtml
sec_0013.xhtml
sec_0014.xhtml
sec_0015.xhtml
sec_0016.xhtml
sec_0017.xhtml
sec_0018.xhtml
sec_0019.xhtml
sec_0020.xhtml
sec_0021.xhtml
sec_0022.xhtml
sec_0023.xhtml
sec_0024.xhtml
sec_0025.xhtml
sec_0026.xhtml
sec_0027.xhtml
sec_0028.xhtml
sec_0029.xhtml
sec_0030.xhtml
sec_0031.xhtml
sec_0032.xhtml
sec_0033.xhtml
sec_0034.xhtml
sec_0035.xhtml
sec_0036.xhtml
sec_0037.xhtml
sec_0038.xhtml
sec_0039.xhtml
sec_0040.xhtml
sec_0041.xhtml
sec_0042.xhtml
sec_0043.xhtml
sec_0044.xhtml
sec_0045.xhtml
sec_0046.xhtml
sec_0047.xhtml
sec_0048.xhtml
sec_0049.xhtml
sec_0050.xhtml
sec_0051.xhtml
sec_0052.xhtml
sec_0053.xhtml
sec_0054.xhtml
sec_0055.xhtml
sec_0056.xhtml
sec_0057.xhtml
sec_0058.xhtml
sec_0059.xhtml
sec_0060.xhtml
sec_0061.xhtml
sec_0062.xhtml
sec_0063.xhtml
sec_0064.xhtml
sec_0065.xhtml
sec_0066.xhtml
sec_0067.xhtml
sec_0068.xhtml
sec_0069.xhtml
sec_0070.xhtml
sec_0071.xhtml
sec_0072.xhtml
sec_0073.xhtml
sec_0074.xhtml
sec_0075.xhtml
sec_0076.xhtml
sec_0077.xhtml
sec_0078.xhtml
sec_0079.xhtml
sec_0080.xhtml
sec_0081.xhtml
sec_0082.xhtml
sec_0083.xhtml
sec_0084.xhtml
sec_0085.xhtml
sec_0086.xhtml
sec_0087.xhtml
sec_0088.xhtml
sec_0089.xhtml
sec_0090.xhtml
sec_0091.xhtml
sec_0092.xhtml
sec_0093.xhtml
sec_0094.xhtml
sec_0095.xhtml
sec_0096.xhtml
sec_0097.xhtml
sec_0098.xhtml
sec_0099.xhtml
sec_0100.xhtml
sec_0101.xhtml
sec_0102.xhtml
sec_0103.xhtml
sec_0104.xhtml
sec_0105.xhtml
sec_0106.xhtml
sec_0107.xhtml
sec_0108.xhtml
sec_0109.xhtml
sec_0110.xhtml
sec_0111.xhtml
sec_0112.xhtml
sec_0113.xhtml
sec_0114.xhtml
sec_0115.xhtml
sec_0116.xhtml
sec_0117.xhtml
sec_0118.xhtml
sec_0119.xhtml
sec_0120.xhtml
sec_0121.xhtml
sec_0122.xhtml
sec_0123.xhtml
sec_0124.xhtml
sec_0125.xhtml
sec_0126.xhtml
sec_0127.xhtml
sec_0128.xhtml
sec_0129.xhtml
sec_0130.xhtml
sec_0131.xhtml
sec_0132.xhtml
sec_0133.xhtml
sec_0134.xhtml
sec_0135.xhtml
sec_0136.xhtml
sec_0137.xhtml
sec_0138.xhtml
sec_0139.xhtml
sec_0140.xhtml
sec_0141.xhtml
sec_0142.xhtml
sec_0143.xhtml
sec_0144.xhtml
sec_0145.xhtml
sec_0146.xhtml
sec_0147.xhtml
sec_0148.xhtml
sec_0149.xhtml
sec_0150.xhtml
sec_0151.xhtml
sec_0152.xhtml
sec_0153.xhtml
sec_0154.xhtml
sec_0155.xhtml
sec_0156.xhtml
sec_0157.xhtml
sec_0158.xhtml
sec_0159.xhtml
sec_0160.xhtml
sec_0161.xhtml
sec_0162.xhtml
sec_0163.xhtml
sec_0164.xhtml
sec_0165.xhtml
sec_0166.xhtml
sec_0167.xhtml
sec_0168.xhtml
sec_0169.xhtml
sec_0170.xhtml
sec_0171.xhtml
sec_0172.xhtml
sec_0173.xhtml
sec_0174.xhtml
sec_0175.xhtml