11. Las matemáticas en el circo
Yo sé que las fórmulas "secas" repelen a los aficionados a la Física. Pero si renuncian a conocer el lado matemático de los fenómenos, estos enemigos de las ciencias exactas se verán privados de la posibilidad de prever el desarrollo de los fenómenos y de determinar las condiciones en que deben realizarse. En nuestro caso concreto, por ejemplo, dos o tres fórmulas son suficientes para determinar exactamente las condiciones necesarias para que se realice con éxito un truco tan sorprendente como el de recorrer el "rizo de la muerte".
Hagamos, pues, los cálculos.
Designemos con letras aquellas magnitudes que intervienen en dicho cálculo:
llamemos h a la altura desde la cual se lanza el ciclista; designemos por x la parte de la altura h que sobrepasa del punto más alto del "rizo"; según la Figura 44, x = h - AB; r representará al radio de la circunferencia del rizo; m designará la masa total del ciclista y la bicicleta; el peso conjunto estará expresado por mg, siendo g la aceleración de la gravedad, que como sabemos es igual a 9,8 m por segundo cada segundo; la letra v será la velocidad del ciclista en el momento de llegar al punto más alto de la circunferencia.
Todas estas magnitudes pueden relacionarse entre sí por medio de dos ecuaciones. En primer lugar, sabemos por la Mecánica que la velocidad que adquiere el ciclista en el momento que, descendiendo por el plano inclinado, llega al punto C (que se encuentra al nivel de B, como puede verse en la parte inferior de la Figura 44) es igual a la que tendrá en la parte superior del rizo, es decir, en el punto B. La primera de estas velocidades viene expresada por la fórmula[6]
v 2 = 2gx
Por consiguiente, la velocidad del ciclista en el punto B será igual a raiz cuadrada de 2gx, es decir, v2 = 2gx
Pero para que el ciclista no se caiga al llegar al punto más alto de la curva hace falta (véase "La anulación de la gravedad") que la aceleración centrípeta que produzca sea mayor que la aceleración de la gravedad, es decir, hace falta que v2/r› g ó v2›gr. Pero como ya sabemos que v2 = 2gx, tendremos que 2gx› gr, o x› r/2.
De esta forma ya sabemos que para que este truco se pueda ejecutar con éxito hay que construir el "rizo" de tal forma que el vértice de la parte inclinada de la pista esté 1/2 radio más alto que el punto superior de la circunferencia. La inclinación de la pista no desempeña ningún papel, lo que importa es que el punto desde el cual comienza a descender el ciclista se encuentre como mínimo 1/4 de diámetro más alto que la cumbre del rizo. En este cálculo no hemos tenido en cuenta el rozamiento de la bicicleta y hemos considerado que la velocidad en el punto C es igual a la velocidad en el punto B. Por esto no es conveniente alargar demasiado la bajada, haciéndola más suave. Cuando el descenso es suave, el rozamiento hace que la velocidad del ciclista al llegar al punto B sea menor que la que tenía en C. Si, por ejemplo, el rizo tiene 16 m de diámetro, el artista debe lanzarse desde una altura de 20 m por lo menos. Si esta condición no se cumple, no hay arte que le ayude a "rizar el rizo"; antes de llegar al punto más alto se caerá.
Cuando realiza este truco la bicicleta va sin cadena. El ciclista confía su máquina a la acción de la gravedad, puesto que ni puede ni debe acelerar ni frenar su movimiento. Todo su arte consiste en mantenerse en el centro de la pista de madera. La menor desviación representa un peligro inminente de salir despedido hacia un lado. La velocidad de la carrera por el interior de la circunferencia es muy grande. Suponiendo que el diámetro de ésta sea igual a 16 m, el ciclista dará la vuelta en 3 segundos. Esto representa una velocidad de… ¡60 km por hora! A esta velocidad no es fácil guiar una bicicleta. Pero esto es precisamente lo que no hace falta. Hay que ser decidido y confiarse a las leyes de la Mecánica. "El truco de la bicicleta no es peligroso de por sí - leemos en un folleto escrito por un profesional -, cuando el aparato está bien calculado y su construcción es sólida. El peligro está en el propio artista. Si le tiembla una mano, se pone nervioso, pierde el control sobre sí mismo o se marea inesperadamente, todo puede esperarse".
En esta misma ley se basa el "rizo de Nésterov" o "looping" y otras figuras de alto pilotaje. Para hacer el "rizo" tiene una importancia primordial tomar buena "carrera" por la curva y mandar diestramente el avión.
12. Falta de peso
Un bromista dijo una vez que sabía un procedimiento de ahorrar en el peso sin engañar a los clientes. El secreto estaba en comprar las mercancías en países próximos al ecuador y venderlas lo más próximo posible a los polos. Ya hace mucho tiempo que sabemos que cerca del ecuador las cosas pesan menos que junto a los polos; 1 kg trasladado desde el ecuador a un polo aumenta en peso 5 g. Claro que para que esta diferencia se note hay que pesarlo en una báscula de resorte hecha (o graduada) en el ecuador, de lo contrario no hay ganancia; porque si las mercancías se hacen más pesadas, lo mismo le ocurre a las pesas.
No creo que nadie se pueda hacer rico comerciando por este procedimiento, pero el bromista tenía razón: la gravedad aumenta realmente al alejarse del ecuador. Esto ocurre porque los cuerpos que están en el ecuador describen las mayores circunferencias al girar la Tierra y también porque la esfera terrestre está más hinchada en el ecuador.
La parte más importante de la pérdida de peso se debe a la rotación de la Tierra. Esta rotación hace que el peso de los cuerpos en el ecuador disminuya, en comparación con el que tienen en los polos, en una fracción igual al 1/290.
Cuando los cuerpos que se trasladan de una latitud a otra son ligeros, la diferencia de peso es insignificante. Pero si se trata de objetos pesados puede alcanzar valores bastante considerables. Nadie sospecha, por ejemplo, que una locomotora que pesa en Moscú 60 t, al llegar a Arcángel resulta 60 kg más pesada, y si va a Odesa, 50 kg más ligera. En un tiempo, desde la isla de Spitzberg se transportaban anualmente a puertos más meridionales cerca de 300.000 t de carbón. Si esta cantidad hubiera sido transportada a un país ecuatorial y pesada en básculas de resorte traídas de Spitzberg, se habría notado una falta de carbón de 1.200 t. Un acorazado que pese en Arcángel 20.000 t, cuando navegue por aguas ecuatoriales será 80 t más ligero; pero esto no se nota, porque todos los demás cuerpos también se hacen más ligeros, sin excluir, naturalmente, el agua del mar[7].
Si la Tierra girara alrededor de su eje más de prisa que ahora, por ejemplo, si los días en vez de tener 24 horas tuvieran 4, la diferencia de pesos de los cuerpos en los polos y en el ecuador sería mucho más sensible. Con días de cuatro horas, por ejemplo, una pesa de 1 kg en el polo pesaría en el ecuador 875 g nada más. Así son las condiciones de gravedad que existen en Saturno. En este planeta los cuerpos que se encuentran en los polos pesan 1/6 parte más que en el ecuador.
Como la aceleración centrípeta aumenta proporcionalmente al cuadrado de la velocidad, no es difícil calcular a qué velocidad de rotación se hará 290 veces mayor en el ecuador, es decir, a qué velocidad se hará igual a la fuerza de atracción. Esto sucedería si la Tierra girase 17 veces más de prisa que en la actualidad (17 *17 = aproximadamente a 290). En estas condiciones los cuerpos dejarían de ejercer presión sobre los sitios en que se apoyan. En otras palabras, si la Tierra girara 17 veces más de prisa, las cosas que estuvieran en el ecuador… ¡no pesarían nada!
En Saturno pasaría lo mismo si su velocidad de rotación aumentara dos veces y media nada más.
De lo expuesto se deduce que el lanzamiento de los satélites artificiales es preferible hacerlo desde regiones ecuatoriales y en dirección oeste - este. Para lanzar satélites cuyas órbitas formen ángulos grandes con el ecuador hay que gastar mucha más energía. Precisamente por esto los primeros satélites norteamericanos volaban solamente sobre las regiones ecuatoriales, ya que los cohetes portadores de que disponían eran poco potentes y no servían para ponerlos en órbitas más inclinadas con respecto al ecuador.
Notas: