34 Desarrollo evolutivo

A través del microscopio, los embriones en fase temprana de todos los mamíferos son tan parecidos que resultan indistinguibles. Ni siquiera el ojo de un observador experto puede determinar si un grupo constituido por unas pocas células se va a convertir más adelante en un ratón, una vaca o una persona. Todos estos embriones tempranos se forman de la misma manera, a través de la fusión de un óvulo y un espermatozoide (cada uno de los cuales contiene la mitad de los cromosomas de un genoma), y su desarrollo sigue un patrón similar durante las primeras semanas de vida intrauterina.

Este hecho no es sorprendente desde un punto de vista evolutivo. Los seres humanos y los ratones se separaron como especies hace sólo alrededor de 75 millones de años, y tiene sentido que nuestro crecimiento embrionario temprano sea similar al del ratón. Sin embargo, los humanos y las moscas de la fruta muestran entre sí una relación mucho más distante. Nosotros somos vertebrados y las moscas de la fruta no lo son; nuestro último ancestro común (posiblemente algo que podríamos denominar «gusano plano redondeado») lleva desaparecido bastante más de 500 millones de años.

No obstante, la nueva ciencia constituida por la biología del desarrollo evolutivo (evo-devo, evolutionary development) ha demostrado que, desde el punto de vista genético, el ser humano y la mosca tienen muchas similitudes. A pesar de nuestras numerosas diferencias fisiológicas, muchos de los genes que dan lugar a la formación de los cuerpos de los seres humanos y de las moscas no es que sean similares, sino que son idénticos. Los mismos segmentos de ADN determinan la posición de los ojos compuestos de las moscas y de los ojos simples del ser humano, al tiempo que disponen en ambas especies las distintas partes del cuerpo en el orden correcto. Son algo así como «programas de software» universales que funcionan con toda naturalidad tanto en el hardware de Drosophila melanogaster como el de Homo sapiens.

El «juego de herramientas genéticas» del desarrollo La ciencia del desarrollo evolutivo combina la genética y la biología, y determina cómo el genotipo define el fenotipo.

Sus aportaciones clave comenzaron a principios de la década de 1980, cuando los científicos alemanes Janni Nusslein-Volhard y Eric Wieschaus utilizaron diversos productos químicos para inducir mutaciones aleatorias en las moscas; después, las cruzaron y estudiaron el desarrollo de sus descendientes desde la fase embrionaria hasta la fase adulta. Cuando una mutación daba lugar a un efecto interesante —aparición de alas extra en un insecto o de patas en su cabeza—, estos dos científicos recorrían el proceso en el sentido inverso para determinar cuál era el gen responsable. Así, pudieron definir la función de decenas de genes, y determinaron los puntos en los que los genes indicaban al embrión cómo debía desarrollarse.

Denominación de los genes

Aunque en la actualidad hay numerosas reglas para denominar a los genes, los científicos que efectuaron los primeros descubrimientos genéticos tenían total libertad para llamarlos como les pareciera más adecuado. Así, la genética está repleta de términos imaginativos. Uno de los primeros genes identificados en el «juego de herramientas» del desarrollo fue denominado hedgehog («erizo») debido a que las larvas de la mosca de la fruta que carecen de una copia activa de este gen son cortas y peludas, con cierta similitud a los erizos. Los mamíferos poseen un gen relacionado con el anterior que fue denominado Sonic hedgehog con referencia al personaje de un videojuego, mientras que el gen correspondiente en los peces se denominó tiggywinkle en referencia al protagonista con púas que aparece en los libros de Beatrix Potter.

La mosca de la fruta presenta una mutación que se denominó Cleopatra debido a que es letal cuando aparece en combinación con un gen llamado asp («áspid»). Otra mutación es la denominada Ken and Barbie: al igual que los muñecos, las moscas portadoras de esta mutación carecen de genitales externos. Muchos de los genes clave descubiertos por Nusslein-Volhard y Wieschaus han mantenido sus denominaciones en alemán, como kruppel («lisiado») y gurken («pepino»). En otras ocasiones, incluso las mentes creativas se quedan atascadas: el gen denominado ring («anillo») no tiene nada que ver con la forma o la función de un anillo; es una abreviatura de su denominación auténtica: Really Interesting New Gene (nuevo gen realmente interesante).

Se demostró que había sólo 15 genes que controlaban la organización de los embriones tempranos. Entre ellos, los genes Hox (abreviatura de homeobox, un segmento de ADN de 180 letras que comparten todos estos genes), que determinan la configuración del embrión de la mosca, estableciendo que tenga una parte anterior y otra posterior, y que posea segmentos y zonas laterales; se localizan en el cromosoma en el mismo orden en el que configuran el cuerpo, desde la cabeza hasta el abdomen. Los genes Hox indican a la cabeza que desarrolle antenas, y al tórax que desarrolle alas y patas. Cuando estos genes mutan, el resultado es la aparición de insectos monstruosos: por ejemplo, moscas con patas en la zona en la que tendría que haber antenas.

A pesar de que los ratones (y el ser humano) poseen más genes Hox que las moscas, su función es exactamente la misma, es decir, la configuración de las distintas partes corporales en el orden en el que dichos genes se sitúan en los cromosomas. Son los elementos clave de una especie de «juego de herramientas genéticas del desarrollo» con el que los embriones adquieren su forma. Estos genes son tan similares que es incluso posible trasplantarlos de un animal a otro sin que pierdan su función. El silenciamiento de un gen Hox en una mosca y su sustitución por el mismo gen de un ratón va a dar lugar a un efecto a menudo imposible de determinar. Lo mismo ocurre con los genes Hox del ser humano.

Los genes Hox son las herramientas más básicas que participan en la configuración del cuerpo. Se han identificado otros muchos genes de este tipo, y todos ellos realizan tareas similares en las distintas especies. Por ejemplo, el gen de la anoftalmía bilateral (ausencia de los globos oculares) se denomina así porque en las moscas que carecen de éste no tienen ojos. Si anulamos este gen en una mosca y lo sustituimos por el gen equivalente del ratón, la mosca tendrá unos ojos normales para su especie. Este hecho es especialmente singular, ya que los insectos poseen ojos compuestos, mientras que los ojos de los mamíferos son simples. Parece que la instrucción del gen fuera: «Haz que aparezca un ojo del tipo del que aparecería normalmente», al tiempo que las demás instrucciones genéticas especifican cuál es el tipo de ojo apropiado para la especie.

«En aquella época no lo sabíamos, pero después descubrimos que todo en la vida tiene una gran similitud, que los mismos genes que son operativos en las moscas también lo son en las personas.»

Eric Wieschaus

Interruptores genéticos El hecho de que la configuración de especies muy distintas y con distribuciones corporales radicalmente diferentes dependa de un conjunto bastante pequeño y básico de genes que codifican la morfología del cuerpo plantea una cuestión obvia. Si compartimos estos genes con las moscas y los ratones, ¿por qué las personas no tenemos alas, antenas y segmentos, o bien hocicos con bigotes y colas?

La respuesta parece estar en los denominados «interruptores genéticos» que activan y desactivan los genes, algunos de los cuales son proteínas denominadas «factores de transcripción»: se unen a secuencias denominadas promotoras y potenciadoras que se sitúan alrededor de los genes y que aumentan o disminuyen su activada. Otras proteínas de este tipo están controladas por el 98% del genoma que no está implicado en la producción de proteínas: los segmentos que carecen aparentemente de sentido y que denominamos «ADN basura». Muchos de estos segmentos parecen desempeñar una función clave en los mensajes de activación e inactivación que se envían a los genes.

Lo que hacen los genes Hox, así como los demás elementos del «juego de herramientas genéticas», es establecer redes de proteínas de tipo interruptor en células concretas, según su posición en el cuerpo. A su vez, estas redes determinan cuáles son los genes que se van a activar y cuáles los que van a permanecer en fase inactiva.

Las proteínas interruptor genéticas nos ayudan a resolver el misterio que rodea el hecho de que un número tan escaso de genes humanos (aproximadamente 21.500, según ha revelado la secuenciación del genoma) sea capaz de construir un organismo tan sofisticado. La maravillosa complejidad del ser humano sólo se debe en parte a la presencia de genes que tienen instrucciones para elaborar proteínas específicas de nuestra especie. El desarrollo evolutivo nos demuestra que la intrincada red de proteínas interruptor que dirige esta orquesta genética tiene tanta o más importancia.

Cronología:

1859: Darwin publica El origen de las especies

1865: Mendel define las leyes de la herencia

Principios del siglo XX: Desarrollo de la síntesis evolutiva moderna

Década de 1980: Descubrimiento de los genes Hox, que determinan la configuración corporal

2001: El Proyecto Genoma Humano revela que sólo alrededor del 2% del genoma contiene genes que codifican proteínas

La idea en síntesis: los genes construyen los cuerpos y las células