07 Genes, proteínas y ADN

Aunque resulta angustioso para un paciente observar que su orina adquiere una coloración negra cuando queda expuesta al aire, la enfermedad que causa este problema —la alcaptonuria— fue muy poco estudiada durante siglos debido a que es prácticamente inocua. En la década de 1890 llamó la atención de Archibald Garrod, un médico inglés. Cuando, al poco tiempo, tuvo lugar el redescubrimiento de las ideas de Mendel, Garrod observó que esta enfermedad seguía un patrón mendeliano de herencia, y que los genes actúan a través de la producción de proteínas.

Aunque la alcaptonuria es una enfermedad rara (afecta aproximadamente a una de cada 200.000 personas), Garrod observó que su frecuencia era mucho mayor en el caso de los matrimonios entre primos hermanos y también que en las familias susceptibles la proporción entre los descendientes no afectados y afectados era exactamente de 3:1. Se dio cuenta de que esto era precisamente lo que habría que esperar si la alcaptonuria fuera debida a un gen recesivo y no a una infección, tal como se suponía en aquella época.

Los conocimientos de bioquímica que poseía Garrod le permitieron proponer una función para dicho gen. Lo que hacía que la orina de los pacientes con alcaptonuria adquiriera una coloración oscura era la presencia de una sustancia, el ácido homogentísico, que habitualmente es metabolizado por el organismo. Garrod sospechó, con acierto, que los pacientes con esta enfermedad carecían de una enzima (una proteína que cataliza las reacciones químicas) que desempeñaba una función clave en su eliminación. El resultado fue que el producto químico se eliminaba junto con la orina y, así, daba lugar a su coloración negra.

Un gen, una proteína A partir de estas observaciones, Garrod dedujo que la función de los genes era la producción de proteínas. Había otros muchos problemas médicos que también podrían estar causados por «errores innatos del metabolismo» similares. El descubrimiento de la función de los genes y de su relación con las proteínas permitió explicar cómo los genes y las mutaciones genéticas influían en la biología. Sin embargo, quizá debido a la relativa infrecuencia de las enfermedades que estudió, las teorías de Garrod —al igual que las de Mendel— fueron casi desconocidas durante decenios.

Además, en aquel momento estas teorías carecían de una evidencia directa que, más tarde —en la década de 1940—, aportaron George Beadle y Edward Tatum. El trabajo de Morgan sobre la mosca de la fruta indicaba que el color de los ojos podía estar relacionado con una serie de reacciones químicas controladas por los genes, pero el organismo era demasiado complejo como para que fuera posible demostrar experimentalmente esta teoría. A diferencia de ello, Beadle y Tatum trabajaron con un hongo sencillo de la levadura denominado Neurospor crassa y lo radiaron para producir mutaciones.

Cuando cruzaron los mutantes con hongos normales, algunos de sus descendientes se multiplicaron libremente, mientras que otros sólo se podían dividir cuando se añadía un aminoácido específico, la arginina. A menos que el aminoácido esencial se proporcionara desde el exterior, el hongo no podía crecer.

Esta secuencia de acontecimientos sugirió que cada gen contiene las instrucciones para elaborar una enzima concreta que actúa después sobre las células. Aunque esta regla se ha modificado desde su propuesta inicial (en el sentido de que algunos genes pueden inducir la producción de más de una enzima o bien de componentes pequeños de proteínas), sigue siendo básicamente correcta. Los genes no actúan de forma directa sobre la química celular sino «por poderes», mediante las proteínas que elaboran cuando son normales o que no elaboran debido a una mutación.

Este descubrimiento tuvo profundas implicaciones en la medicina: al tiempo que es difícil alterar o modificar los genes defectuosos, algunas enfermedades genéticas pueden ser tratadas de manera directa mediante la sustitución de la proteína ausente.

¿Vida en Marte?

Si se descubriera vida primitiva en Marte o en cualquier otro planeta, lo primero que se preguntarían los científicos sería si está fundamentada en el ADN. Las instrucciones genéticas de cada organismo sobre la Tierra están escritas en su ADN (la única excepción la constituyen ciertos virus ARN que no se pueden reproducir si no se introducen en el interior de una célula con ADN). Esta demostración ofrece una evidencia abrumadora de que todos los organismos proceden, en última instancia, de un ancestro común.

Si la supuesta vida extraterrestre también utilizara el ADN, la misma conclusión seguiría siendo cierta. Quizá la vida en Marte pudo haber empezado a partir de microorganismos que llegaron desde meteoritos procedentes de la Tierra. O por el contrario, podría ocurrir que nosotros fuéramos, en realidad, marcianos.

Aparece el ADN El descubrimiento de que los genes son los portadores del código necesario para la elaboración de las proteínas conllevó una modificación de los conceptos convencionales relativos a su construcción, dado que se consideraba que los genes eran las proteínas. Si éstas fueran realmente el producto de los genes, el fundamento químico de la herencia debería estar en algún otro sitio. En 1869, el científico suizo Friedrich Miescher lo localizó en una misteriosa sustancia purificada a partir de vendajes empapados en pus: el ácido desoxirribonucleico o ADN.

Aunque Miescher había sospechado que el ADN podía desempeñar una función en la herencia, ésta se mantuvo en el terreno de la especulación hasta que Oswald Avery, Maclyn McCarty y Colin MacLeod iniciaron en 1928 una importante serie de experimentos. El equipo de Avery estaba intrigado por una bacteria que causa neumonía y que posee dos formas, una de ellas letal y la otra inocua. Cuando los científicos inyectaron bacterias inocuas vivas y bacterias letales inactivadas en ratones, quedaron sorprendidos por el hecho de que los roedores caían enfermos y fallecían. Los microorganismos inocuos habían adquirido de alguna manera la virulencia de los microorganismos letales inactivados.

Para definir lo que denominaron el «factor de transformación», los científicos experimentaron con más de 100 litros de bacterias durante más de una década. Trataron estas colonias con una enzima tras otra para evaluar los distintos procedimientos químicos y seleccionar así diversos candidatos capaces de transmitir las instrucciones letales de unos microorganismos a otros. Al probar una enzima que fragmentaba el ADN, observaron que se interrumpía la transformación: el ADN era el mensajero. Alfred Hershey y Martha Chase obtuvieron más adelante, en 1952, evidencias adicionales al marcar el ADN mediante radiación para demostrar que es el material genético existente en un fago, un tipo de virus que ataca a las bacterias.

El ADN no es tan sólo el sustrato vital de las bacterias y los fagos: posee la información genética correspondiente a todos los organismos vivos que pueblan la Tierra. La única excepción la constituyen algunos virus que, en vez del ADN, utilizan una molécula química relacionada con éste, el ácido ribonucleico (ARN); dichos virus son incapaces de reproducirse por sí mismos y hay un cierto debate sobre si realmente se pueden considerar vivos.

El código ADN se transcribe usando sólo cuatro «letras» denominadas nucleótidos o bases (véase el recuadro). Este sencillo alfabeto es suficiente para explicar la existencia de organismos tan diferentes como el ser humano, el arenque, la rana y el helecho. Permite explicar también tanto los genes que producen las proteínas como los cambios genéticos que activan e inactivan los genes y también su autorreplicación, de manera que es posible copiar todo el código cada vez que se divide una célula. Es realmente el software de la vida que contiene la información necesaria para la construcción y el funcionamiento de un organismo.

El alfabeto del ADN

Cada molécula de ADN está formada por fosfatos y azúcares, que conforman su arquitectura estructural, y por elementos químicos ricos en nitrógeno denominados nucleótidos o bases, que codifican la información genética. Las bases pueden ser de cuatro tipos: adenina (A), citosina (C), guanina (G) y timina (T). En conjunto, proporcionan las letras en las que está redactado el código genético.

Las bases se pueden subdividir adicionalmente en dos clases: la adenina y la guanina son estructuras de mayor tamaño denominadas purinas, mientras que la citosina y la timina son pirimidinas de tamaño menor. Cada purina tiene una pirimidina complementaria a la cual se une (A a T y C a G). Las mutaciones tienden a sustituir una purina por una purina, o bien una pirimidina por una pirimidina; así, A es sustituida generalmente por G y C por T.

Cronología:

1869: Friedrich Miescher (1844-1895) descubre el ADN

1896: Archibald Garrod (1857-1936) inicia el estudio de las causas de la alcaptonuria

1941: George Beadle (1903-1989) y Edward Tatum (1909-1975) confirman que los genes elaboran las proteínas y proponen la hipótesis de un gen para cada proteína

1944: Oswald Avery (1877-1955), Maclyn McCarty (1911-2005) y Colin MacLeod (1909-1972) demuestran que el ADN es la estructura que lleva en sí misma la información genética

1952: Alfred Hershey (1908-1977) y Martha Chase (1927-2003) utilizan técnicas de marcado radiactivo para confirmar la función del ADN en el contexto de la genética

La idea en síntesis: los genes elaboran las proteínas y están constituidos por ADN