21 Supermicroorganismos

No todas las enfermedades tienen un origen genético, pero como ha señalado el premio Nobel Paul Berg, todas las enfermedades son hasta cierto punto genéticas. Las enfermedades infecciosas como la inmunodeficiencia humana (VIH)/síndrome de inmunodeficiencia adquirida (sida), la tuberculosis y la gripe, no se deben a alteraciones del ADN (tal como ocurre con los tumores) ni tampoco a mutaciones mendelianas importantes (como la fibrosis quística). Sin embargo, los genes de los microorganismos patógenos y los de sus huéspedes humanos son clave para que virus, bacterias y parásitos causen enfermedades en el ser humano.

Los linfocitos T y los anticuerpos elaborados por el sistema inmunitario están influidos por nuestra constitución genética; las variaciones pueden hacer que mostremos una susceptibilidad mayor o menor a ciertas enfermedades. Las personas con grupo sanguíneo O (un rasgo determinado genéticamente) son menos vulnerables a la malaria, mientras que quienes presentan otros genotipos pueden mostrar una susceptibilidad menor a la infección por el VIH.

Los genes también controlan cómo los microorganismos patógenos atacan al cuerpo y esquivan el sistema inmunitario; además, influyen en el efecto de los medicamentos y las vacunas que utiliza la medicina para reforzarlo. Asimismo, los genes explican por qué algunas cepas del virus de la gripe nos afectan de manera leve, mientras que otras son capaces de causar millones de muertes, o cómo las nuevas enfermedades pueden afectar a grupos de población enteros y por qué los medicamentos que inducían efectos terapéuticos adecuados pierden gradualmente su efectividad.

Evolución y enfermedad Cuando Cristóbal Colón llegó al Nuevo Mundo en 1492, se estima que en todo el continente había 50 millones de habitantes. Sin embargo, a mediados del siglo XVII la población indígena era de 6-8 millones de personas. Ciertamente, hubo víctimas del genocidio que llevaron a cabo los invasores; aunque, los asesinos más temidos fueron las enfermedades que llevaron consigo los conquistadores.

Durante siglos, los nativos del Viejo Mundo habían convivido con los virus de la viruela y el sarampión, así como con los microorganismos causantes del tifus y de la fiebre amarilla. Habían desarrollado un cierto grado de resistencia: la selección natural había favorecido la persistencia ante estas infecciones. Por el contrario, los indígenas americanos carecían de estimulación antigénica previa. Su ambiente libre del virus de la viruela no habían fomentado la aparición de mutaciones aleatorias que les otorgaran resistencia. Por ello, cuando llegó el virus, no hubo nada que lo contuviera. El científico Jared Diamond ha narrado en Armas, gérmenes y acero: breve historia de la humanidad en los últimos trece mil años que las enfermedades que llevaron los españoles consigo tuvieron, en lo relativo a la rápida conquista del continente, al menos la misma importancia que su tecnología.

Un proceso similar explica cómo las nuevas enfermedades infecciosas han saltado la barrera entre las especies animales y el ser humano. El VIH causa el sida, y se considera que, en su origen, infectaba a los chimpancés; durante las décadas de 1960 o 1970 pasó al ser humano, posiblemente cuando un cazador de animales salvajes recibió una mordedura. Aunque esta infección era inocua en los chimpancés, los humanos carecían de defensas genéticas. En poco tiempo, el virus desarrolló nuevas mutaciones que le permitieron propagarse de persona a persona, causando desde entonces el fallecimiento de al menos 2,5 millones de personas cada año.

Eludiendo nuestras defensas Con el paso del tiempo, algunas personas desarrollarán resistencia al VIH, de la misma forma que algunos individuos han desarrollado mecanismos de defensa ante la viruela o la malaria. Sin embargo, el largo ciclo vital del ser humano hace que sean necesarios varios siglos para que estos rasgos se manifiesten en mutaciones y, después, se propaguen a todo el acervo. Los microorganismos patógenos no tienen este problema: la increíble velocidad con la que se reproducen las bacterias y los virus les concede una ventaja enorme sobre sus huéspedes. Dicho de forma sencilla, pueden evolucionar con una rapidez mucho mayor de la que podemos hacerlo nosotros y, así, evitar las armas que utilizamos para combatirlos.

La introducción de los antibióticos a mediados del siglo XX dio lugar a toda una revolución en el control de las enfermedades infecciosas. La penicilina y la estreptomicina permitieron tratar con éxito amenazas como la tuberculosis y la meningitis. Los antibióticos se convirtieron en algo tan corriente que, en ocasiones, eran denominados simplemente medicinas; incluso hoy en día, muchos pacientes se sienten un tanto decepcionados cuando los médicos no les prescriben antibióticos.

Sin embargo, las bacterias se multiplican con tal rapidez que sus genomas apenas sí permanecen sin modificarse. Cada una de las miles de millones de divisiones celulares que experimenta a diario una colonia representa una oportunidad para que se produzca una mutación que otorgue un cierto grado de resistencia a los antibióticos. La resistencia también se puede propagar a través de otro mecanismo, dado que las bacterias donan genes de inmunidad a sus vecinas a través del intercambio de pequeños paquetes portátiles de ADN llamadas plásmidos.

De esta manera se originan los denominados supermicroorganismos. La mayor parte de las cepas de Staphylococcus aureus resistentes a meticilina (SARM) es resistente a todos los antibióticos de la familia de las penicilinas. Las infecciones causadas por esta bacteria, antes consideradas de tratamiento sencillo, producen en la actualidad cerca de 1.600 fallecimientos anuales en el Reino Unido. La tuberculosis resistente a múltiples antibióticos afecta anualmente a 500.000 personas en todo el mundo. Y virus, como el VIH, y parásitos como Plasmodium falciparum (causante de la malaria) también pueden adquirir inmunidad a los medicamentos.

Medicina genética La humanidad puede carecer de la capacidad para evolucionar con la misma rapidez que sus enemigos microscópicos, pero dispone de otras armas. Mediante el estudio de los genomas de los microorganismos patógenos es posible diseñar medicamentos nuevos a partir de una posición de ventaja. Por ejemplo, el descubrimiento de que el VIH necesita una enzima denominada transcriptasa inversa para reproducirse dio lugar a fármacos inhibidores como la zidovudina (AZT), que puede prevenir durante decenios la aparición de las manifestaciones clínicas floridas del sida.

El estudio genético del virus de la gripe nos ha aportado los inhibidores de la neuraminidasa, que son medicamentos (como el oseltamivir [Tamiflu®]) que interfieren con una proteína clave que el virus necesita para introducirse en las células. En la actualidad, se han secuenciado los genomas de la malaria, la tuberculosis, la peste y la fiebre tifoidea, así como de microorganismos como las clamidias y SARM, lo que va a permitir que los científicos determinen los genes objetivo esenciales sobre los que actuarán los nuevos medicamentos. Incluso identificar los genes que favorecen la resistencia a los antibióticos, lo que podría facilitar su inhibición y recuperar así la efectividad anterior de fármacos. Es posible que la ventaja genética de los microorganismos patógenos no dure demasiado.

La evolución de la virulencia

Los nuevos patógenos son a menudo extremadamente virulentos y causan una mortalidad elevada debido a que sus huéspedes, carentes de estimulación inmunológica previa, tienen poca resistencia. Sin embargo, con el paso del tiempo su gravedad se reduce, y no sólo porque la evolución ayuda gradualmente al ser humano a defenderse. La letalidad extrema también puede ser nociva para el ajuste adaptativo de los microorganismos.

Si un virus o una bacteria mata con demasiada rapidez a su huésped, antes de que tenga la posibilidad de infectar a otro, también muere junto con toda su progenie. Así, la selección natural favorece a las cepas que causan alteraciones de grado menor en los organismos a los que atacan, dado que son las que tienen más posibilidades de propagarse.

Ésta puede ser la razón por la que muchas enfermedades pierden su virulencia con el paso del tiempo. Por ejemplo, la sífilis dio lugar a una elevada tasa de mortalidad cuando apareció en Europa en el siglo XVI. Sin embargo, a pesar de que sigue siendo una enfermedad grave, no suele causar la muerte de los pacientes. Las nuevas cepas del virus de la gripe parecen seguir el mismo camino. El virus de la gripe aviar H5N1 es en la actualidad extremadamente letal y ha causado el fallecimiento de más del 60% de las personas a las que ha infectado, pero los científicos han señalado que esta tasa de mortalidad se reducirá sustancialmente si el virus desarrolla mutaciones que faciliten su transmisión de persona a persona.

En cualquier caso, esta tendencia no es inevitable. Si un microorganismo acelera el fallecimiento del huésped mediante los síntomas que le ayudan a diseminarse, como los estornudos, la hemorragia o la diarrea, puede seguir siendo intensamente letal.

Cronología:

Siglos XV y XVI: Los microorganismos trasladados desde Europa hasta el continente americano dan lugar a la devastación de las poblaciones nativas

1928: Descubrimiento de la penicilina

1961: Identificación inicial de Staphylococcus aureus resistent a meticilina (SARM)

2001: Secuenciación del genoma de SARM

La idea en síntesis: todas las enfermedades son genéticas