04 La genética de la evolución

Hoy en día se acepta que la genética mendeliana es el mecanismo a través del cual tiene lugar la evolución darwiniana. Sin embargo, en el momento de su redescubrimiento, la teoría de Mendel se consideró incompatible con la de Darwin. Los intentos por conciliar estas dos grandes teorías de la biología del siglo XIX se convirtieron en una cuestión dominante en la genética de la primera parte del siglo XX y permitieron esbozar los principios que, en su esencia, se siguen aceptando en la actualidad.

Muchos biólogos que habían defendido inicialmente las ideas de Mendel consideraron que su descripción de los genes como entidades diferenciadas parecía descartar la evolución gradual propuesta implícitamente en la teoría de la selección natural. La herencia mendeliana no parecía genera una cantidad suficiente de variaciones hereditarias fiables como para reducir los procesos selectivos y generar nuevas especies. En su lugar, los «mutacionistas» o «saltacionistas» proponían que la aparición de mutaciones importantes y súbitas hacía avanzar la evolución a saltos.

Una escuela rival, la de los biometristas, estaba de acuerdo con Darwin en el hecho de que existía una variación amplia y continua entre los individuos, pero consideraba errónea la teoría de Mendel. Estos investigadores señalaban que los rasgos hereditarios no podían explicar esta variedad en el caso de que la información genética estuviera contenida en unidades independientes que podían reaparecer intactas tras haber permanecido ocultas durante una generación. Aparentemente, entre los distintos organismos de una misma especie había demasiadas diferencias (aún mayores entre las diferentes especies) como para que los genes diferenciados pudieran explicarlas todas.

La Patrulla X

Se supone que los superhéroes de los cómics y las películas de La Patrulla X han adquirido poderes extraordinarios, tales como el control de Magneto sobre los campos magnéticos y el de Tormenta sobre el clima, a través de mutaciones genéticas espontáneas. Resulta entretenido, pero descabellado desde el punto de vista científico, y no solamente debido a que estos poderes son inverosímiles. El planteamiento sigue la propuesta del «saltacionismo», es decir, el concepto de que la evolución avanza a grandes saltos cuando los individuos adquieren mutaciones masivas que les permiten desarrollar nuevas tareas. La genética de poblaciones barrió este concepto erróneo a principios del siglo XX: la evolución se produce a través de pequeñas mutaciones que pueden dar lugar a cambios rápidos cuando son seleccionadas por el ambiente.

Los descubrimientos de T. H. Morgan respecto a los cromosomas comenzaron a explicar cómo se podían conciliar las propuestas de Darwin y Mendel. Sus moscas demostraron que las mutaciones no generan especies nuevas por sí mismas, sino que incrementan la diversidad de una población dando lugar a un conjunto de individuos con genes diferentes sobre los cuales puede actuar la selección natural. Esta propuesta condujo a una nueva generación de genetistas a considerar que ambas teorías podían combinarse. Para ello, diseñaron nuevas herramientas, introdujeron las matemáticas en sus indagaciones y llevaron los métodos de investigación al campo de la genética.

Genética de poblaciones El elemento clave para comprender de qué manera la selección natural se podía conciliar con las propuestas de Mendel fue la consideración de un nivel superior al de los organismos individuales y los genes. Para ello, fueron necesarios dos avances importantes. En primer lugar, el genetista inglés Ronald Fisher propuso que la mayor parte de los rasgos fenotípicos no estaban controlados por un único gen, tal como ocurría claramente en el caso de los guisantes de Mendel, sino por una combinación de genes distintos. Este investigador utilizó métodos estadísticos de diseño reciente para demostrar que este tipo de herencia podía explicar la amplia variación entre individuos determinada por los especialistas en biometría sin invalidar por ello las leyes de Mendel.

Los especialistas en genética de poblaciones también se dieron cuenta de que la aparición de mutaciones que dan lugar a nuevas variantes genéticas o nuevos alelos solamente es el comienzo del proceso evolutivo. Lo más importante es cómo estos alelos se distribuyen en toda la población. Las grandes mutaciones tienen pocas posibilidades de propagarse: cuando no son letales en sí mismas tienden a ser tan significativas que hacen que los individuos portadores queden «fuera de juego» en su ambiente. Estas variantes tienen menos posibilidades de supervivencia y reproducción. Sin embargo, las mutaciones pequeñas que resultan ventajosas se incorporan gradualmente al conjunto de genes y los individuos portadores tienen más descendientes.

La polilla moteada El ejemplo más conocido es el de la polilla moteada. Antes de la revolución industrial en Inglaterra, estos insectos presentaban un cuerpo uniformemente blanco y moteado, un esquema de color adaptativo que les permitía camuflarse en los líquenes que cubrían los troncos de los árboles. Sin embargo, a lo largo del siglo XIX la polución procedente de las fábricas de Manchester y de otros centros industriales hizo que los troncos de los árboles de los bosques cercanos adquirieran una coloración negra con el hollín, además de destruir los líquenes.

La polilla moteada presenta una variante de color negro debido a una mutación en el gen que produce el pigmento melanina. Esta variante era infrecuente a principios del siglo XIX y representaba alrededor del 0,01% de la población: éste constituyó un ejemplo notable de una mutación importante que redujo la adaptación al medio ambiente, dado que las polillas negras destacaban mucho y eran ingeridas rápidamente por los pájaros. Sin embargo, hacia 1848 el 2% de la población de polillas en la región de Manchester era de color negro, y en 1895 esta cifra se había incrementado hasta el 95%. La modificación del medio ambiente, en el que ahora predominaban los árboles cubiertos por hollín, había hecho que el alelo que codificaba el color oscuro en la polilla tuviera una ventaja adaptativa.

El genetista inglés J. B. S. Haldane calculó que la dominancia casi total del alelo que codificaba el color oscuro en la población de polillas requería que los insectos de color negro tuvieran una probabilidad de supervivencia y de reproducción 1,5 veces mayor debido, precisamente, a su color. Las matemáticas han demostrado desde entonces que este tipo de cambios genéticos mínimos pueden multiplicarse con una gran rapidez incluso si sus efectos son sólo ligeros.

Especiación

Uno de los triunfos de la síntesis evolutiva consistió en la definición de cómo se constituyen las nuevas especies. Hay cuatro mecanismos principales, y todos ellos se fundamentan en la separación parcial o completa de dos grupos de población, a menudo por la aparición de una barrera geográfica, como puede ser un río o una cadena montañosa, de manera que estas dos poblaciones ya no pueden cruzarse. Una vez que quedan aislados, la deriva genética nos dice que, con el paso del tiempo, los grupos presentarán cada vez más diferencias entre sí, aunque no existan presiones selectivas. Cuando estas poblaciones vuelven a establecer contacto, a menudo han experimentado tal divergencia que no pueden cruzarse, es decir, se han convertido en especies distintas.

Deriva genética La selección natural no es el único método a través del cual tiene lugar la evolución. Los genes también pueden presentar tendencias. Tal como señala la ley de segregación de Mendel, cada individuo posee dos copias de cada gen y transmite aleatoriamente una de ellas a su descendencia. En una población grande, cada alelo se transmite a las generaciones siguientes con la frecuencia inicial, siempre y cuando no haya presiones selectivas. No obstante, la aleatoriedad de este proceso implica que pueden ocurrir sucesos extraños cuando las poblaciones son pequeñas. Las variaciones aleatorias en la herencia pueden hacer que una variante genética sea más frecuente que otra, sin que ello indique ninguna forma de selección natural.

Imaginemos que una especie de pájaros posee dos alelos que codifican la longitud del pico, uno de ellos correspondiente al pico largo, uno de ellos correspondiente al pico largo y el otro al pico corto, y que todos los progenitores de una colonia poseen una copia de cada uno de estos alelos. En una población grande, cada alelo presenta una frecuencia de aproximadamente el 50% en la generación siguiente, debido al gran número de individuos. Sin embargo, imaginemos ahora que tenemos sólo dos parejas de cría, de nuevo con una copia de cada alelo. El resultado más probable sigue siendo una distribución 50-50, pero el bajo número de individuos no lo garantiza. Uno de los alelos podría ser predominante en la descendencia simplemente por azar. Los biólogos lo denominan «efecto fundador»: el conjunto de genes de cualquier colonia nueva está configurado por los genotipos aleatorios que portan los fundadores de la colonia.

Este concepto de deriva genética constituyó otra explicación de la variación intraespecie e interespecie a través de la herencia mendeliana, sin necesidad de recurrir a cambios mutacionales súbitos. Incluso en los casos en los que la selección natural no parecía estar actuando, la ciencia poseía un segundo método mediante el cual podía explicar la evolución a través de la genética. La evidencia de que las teorías de Mendel y de Darwin eran compatibles estaba empezando a adquirir solidez.

Cronología:

1859: Darwin publica El origen de las especies

1865: Mendel identifica las leyes de la herencia

1910: Los experimentos de Morgan sobre los cromosomas sugieren que las dos teorías son compatibles

1924: J. B. S. Haldane (1892-1964) publica sus estudios sobre la polilla moteada

1930: Ronald Fisher (1890-1962) publica The Genetical Theory of Natural Selection

1942: Julian Huxley (1887-1975) publica Evolution: The Modern Synthesis

La idea en síntesis: la genética dirige la evolución