33 Animales genéticamente modificados

Las denominaciones Fearless Mouse, OncoMouse, Mighty Mouse y Frantic Mouse parecen referirse a alguna versión murina de las Tortugas ninja, pero en realidad corresponde a animales genéticamente modificados (GM). Desde que Rudolf Jaenisch, del Instituto Tecnológico de Massachusetts, inyectó por primera vez ADN extraño en un embrión de ratón en 1974, se han creado millones y millones de roedores GM para la investigación médica.

La ingeniería genética también está empezando a convertir los animales en una especie de «factorías biológicas» que pueden segregar en su leche sustancias de tipo farmacológico u otros productos químicos útiles. Asimismo promete solucionar el problema de la escasez de órganos para trasplante, a través de la modificación de los cerdos para que sus corazones y riñones puedan ser trasplantados al ser humano. Además, podría permitir la producción de una carne más nutritiva, e incluso recuperar la esperanza de la derrota definitiva de la malaria (véase el recuadro de la página siguiente).

De ratones GM y hombres La inmensa mayoría de los animales GM creados hasta la fecha son roedores, y la mayor parte de ellos, ratones. En Reino Unido, donde los experimentos con animales se documentan de manera meticulosa por razones del bienestar de los propios animales, más de la tercera parte de los 3,1 millones de procedimientos anuales que se llevan a cabo tiene como protagonistas a los ratones GM. Algunos de estos roedores transgénicos, como la cepa OncoMouse (creada en 1988), poseen genes procedentes de embriones infectados por un virus; concretamente, tienen en su genoma un gen que los hace susceptibles al cáncer. Otros son los ratones «con silenciamiento genético selectivo» (ratones knockout), en los que se anula un gen para que los científicos puedan evaluar los efectos.

Martin Evans, Mario Cappechi y Oliver Smithies, quienes recibieron en 2007 el premio Nobel de medicina, crearon en 1989 el primer ratón knockout. La contribución de Evans fue el descubrimiento de las células madre embrionarias (las veremos con mayor detalle en el capítulo 35), y también la propuesta de que estas células progenitoras se podían utilizar para la creación de tejidos genéticamente modificados en los embriones de ratón. Cappechi y Smithies desarrollaron de manera independiente un método para aprovechar la recombinación (con intercambio del ADN por parte de los cromosomas), con objeto de actuar sobre genes concretos y después desactivarlos.

Mosquitos GM

La malaria, una enfermedad transmitida al ser humano por el mosquito, se cobra hasta 2,7 millones de vidas humanas cada año, principalmente en África. Un equipo de investigación de la Universidad Johns Hopkins se ha propuesto erradicarla mediante el uso de técnicas de ingeniería genética y, para ello, ha desarrollado un mosquito GM portador de una proteína que lo hace inmune a la infección por el parásito que causa la malaria.

Dado que la malaria altera la capacidad de reproducción de los mosquitos infectados, la variante GM podría tener una ventaja adaptativa si se liberara en la naturaleza. Esto quiere decir que, con el paso del tiempo, los insectos resistentes podrían sustituir a los mosquitos naturales, poniendo fin así a la diseminación del parásito. Sin embargo, esta estrategia ha sido rechazada por algunos grupos defensores del medio ambiente, ya que conllevaría la sustitución de una especie natural por una variante modificada genéticamente. Hasta el momento, el mosquito GM no ha sido liberado en la naturaleza.

Al combinar estas técnicas, fue posible crear ratones que carecían casi por completo de genes (a pesar de que al anular cualquier gen, en ocasiones los efectos son letales). Los primeros ratones knockout carecían de un gen denominado HPRT, que en el ser humano causa una enfermedad infrecuente denominada síndrome de Lesch-Nyhan; al poco tiempo se crearon ratones que carecían de los genes asociados a la fibrosis quística, el cáncer y otras enfermedades humanas.

En la actualidad, los genetistas que pretenden definir la función de un gen pueden crear ratones en los que dicho gen está anulado, lo que les permite observar los efectos. Cuando se anula el gen que codifica la proteína miostatina, el resultado es una especie de «superratón» cuyos músculos tienen un tamaño extraordinariamente grande. Los ratones que carecen de otro gen «pierden el miedo» y se «abrazan» a los gatos. Hoy día los científicos pueden crear modelos a medida de las enfermedades humanas que les interesan, con objeto de investigar su progresión o de evaluar el efecto de posibles medicamentos. Por ejemplo, Frantic es un ratón knockout propenso a la ansiedad, mientras que hay otras cepas susceptibles a la enfermedad de Alzheimer, la cardiopatía, la enfermedad de Parkinson o la diabetes.

Farmacia animal El hilo de telaraña es una de las fibras más resistentes que conoce la ciencia, con una resistencia a la tensión cinco veces superior a la del acero. Esta propiedad lo hace atractivo para la industria, para la fabricación de cables, suturas, ligamentos artificiales o incluso chalecos antibalas; sin embargo, tiene un gran inconveniente. Las arañas elaboran muy poca cantidad, y estos insectos son carnívoros territoriales de crianza imposible. La ingeniería genética ha ofrecido una solución ingeniosa a la que suele denominarse pharm (de farm [cultivar] y pharmaceutical [fármaco]). La compañía canadiense Nexia ha introducido dos genes de arañas en cabras, que ahora segregan en su leche proteínas del hilo de telaraña. Se pueden obtener grandes cantidades de estas proteínas para hilar fibras de todo tipo.

¿Es una crueldad la aplicación de técnicas de ingeniería genética a los animales?

El proceso a través del cual se llevan a cabo las técnicas de ingeniería genética no conlleva ningún peligro para el bienestar de los animales, aunque los genes anulados o añadidos pueden inducir efectos perjudiciales, según cuáles sean. No hay ninguna razón para considerar que los animales GM pharmed van a ser diferentes de los que se crían de manera convencional: la evidencia obtenida a través de las «cabras araña» y de los cerdos productores de ácidos grasos omega-3 no sugiere que vaya a haber ningún problema. Sin embargo, muchos animales de laboratorio GM —la mayor parte de ellos ratones— son creados con el único objetivo de servir como modelo de alguna enfermedad humana, de manera que posiblemente exista en muchos casos un grado de sufrimiento. Algunos de estos animales se utilizan para evaluar nuevos medicamentos o técnicas quirúrgicas. Sin embargo, las dos terceras partes de los ratones GM que se crean en Reino Unido tienen el objetivo de proporcionar células o de mantener colonias de cría, y estos animales nunca son sometidos a experimentos.

La compañía norteamericana GTC Biotherapeutics ha aplicado una estrategia similar con la introducción de genes humanos en cabras, que ahora segregan en su leche un producto que estimula la coagulación de la sangre. En 2006 se creó el fármaco denominado ATryn, el primer producto médico pharmed aprobado para su uso en humanos.

Y un grupo de científicos de la Universidad de Harvard ha introducido un gen del gusano nematodo Caenorhabditis elegans en cerdos, de manera que ahora producen ácidos grasos omega-3. Las dietas ricas en estos nutrientes están relacionadas con una potenciación de la función cerebral y con una disminución del riesgo de cardiopatía, aunque los ácidos grasos omega-3 sólo se encuentran en el pescado azul. Los cochinillos que podrían convertir el beicon en un alimento sano se han llamado, por consiguiente, Salmón (Salmon), Atún (Tuna) y Trucha (Trout). No hay nada que sugiera que el consumo de carne, leche o huevos GM pueda ser peligroso; el grado de aceptación de los consumidores es otra cuestión.

Otra aplicación muy interesante de la ingeniería genética animal es la perspectiva de crear cerdos con órganos «humanizados» que no serían rechazados por el sistema inmunitario de los pacientes a los que se podrían trasplantar. Cada año mueren miles de enfermos en lista de espera para un trasplante renal, cardíaco o hepático, y los órganos del cerdo tienen un tamaño apropiado para su uso en el ser humano.

Sin embargo, este tipo de «xenotrasplante» todavía podría fracasar en otro aspecto de la genética. El genoma del cerdo contiene el ADN de virus incluidos en su código genético a lo largo de millones de años de evolución. A pesar de que estos retrovirus endógenos porcinos (PERV, porcine endogenous retroviruses) no hacen que los animales sean peligrosos, algunos de ellos parecerían capaces de infectar las células humanas en cultivo. No obstante, la genética también podría solucionar este problema: los científicos han identificado los receptores a través de los cuales los PERV se introducen en las células, de manera que podría ser posible desactivarlos y limitar así cualquier amenaza que pudieran representar para la salud.

Cronología:

1974: Rudolf Jaenisch (nacido en 1942) crea el primer ratón GM

1988: Creación de OncoMouse, un modelo transgénico murino para la investigación sobre el cáncer

1989: Las investigaciones de Martin Evans (nacido en 1941), Mario Cappechi (nacido en 1937) y Oliver Smithies (nacido en 1925) dan lugar a la creación de los primeros ratones knockout

2000: Creación de las «cabras araña» modificadas genéticamente mediante la introducción de un gen que da lugar a la aparición en su leche de proteínas de hilo de telaraña

2006: ATryn se convierte en el primer medicamento pharmed aprobado para su comercialización

La idea en síntesis: los animales GM salvan vidas humanas