4. La caída de los planetas en el Sol
¿Te has puesto a pensar alguna vez en lo que sucedería con nuestra Tierra si al encontrarse con un obstáculo repentinamente se detuviera en su camino alrededor del Sol?
Ante todo, naturalmente, la gigantesca reserva de energía latente en nuestro planeta como cuerpo en movimiento se transformaría en calor y encendería el globo terrestre.
La Tierra se mueve sobre su órbita decenas de veces más veloz que una bala, y fácilmente se puede calcular que la transformación de la energía de este movimiento en calor produciría una extraordinaria elevación de temperatura que instantáneamente transformaría nuestro mundo en una nube gigantesca de gases incandescentes…
Pero aun si la Tierra en su detención brusca escapara a este destino, estaría igualmente condenada a una catástrofe ígnea; atraída por el Sol, se dirigiría hacia él con una velocidad creciente y perecería en un abrazo de fuego.
Esta fatal caída empezaría lentamente, con velocidad de tortuga; en el primer segundo la Tierra se aproximaría al Sol sólo 3 mm. Pero, en cada segundo, la velocidad crecería progresivamente y alcanzaría en el último segundo 600 km. Con esta inconcebible velocidad se precipitaría el globo terrestre sobre la superficie incandescente del Sol.
Es interesante calcular cuánto tiempo duraría este vuelo fatal. ¿Se prolongaría mucho la agonía de nuestro mundo? La tercera ley de Kepler nos ayuda a efectuar este cálculo; dicha ley se refiere al movimiento no sólo de los planetas, sino también de los cometas y de todos los cuerpos celestes que se mueven en el espacio sometidos a la gravitación universal. Esta ley relaciona el período de revolución de un planeta (su “año”) con su distancia al Sol, y dice:
“Los cuadrados de los períodos de revolución de los planetas se relacionan entre sí como los cubos de los semiejes mayores de sus órbitas.”
En nuestro caso podemos comparar el globo terrestre volando en línea recta hacia el Sol con un cometa imaginario que se mueve por efecto de la gravitación según una elipse ceñida y muy aplastada, cuyos puntos extremos están situados: uno, en la órbita de la Tierra, y el otro, en el centro del Sol. El semieje mayor de la órbita de este cometa, evidentemente, es igual a la mitad del semieje mayor de la órbita de la Tierra. Calculemos cuál debe ser el período de revolución de este cometa imaginario.
Formemos la proporción, basados en la tercera ley de Kepler
El período de revolución de la Tierra es igual a 365 días; tomemos el semieje mayor de su órbita igual a la unidad y entonces el semieje mayor de la órbita del cometa será igual a 0,5.
Nuestra proporción toma ahora la siguiente forma:
de donde:
Por consiguiente,
Nos interesa propiamente no el período entero de revolución de este cometa imaginario, sino la mitad de su período, es decir, la duración del vuelo en un sentido: de la órbita de la Tierra hasta el Sol. Éste será el tiempo de duración de la caída de la Tierra en el Sol que buscamos. Calculémoslo
Por lo tanto, para saber en cuánto tiempo la Tierra caería en el Sol es necesario dividir la duración del año por raíz cuadrada de 32, o sea, por 5,65. Esta operación da, en números redondos, 65 días.
Así, pues, hemos calculado que la Tierra, súbitamente detenida en su movimiento por su órbita, caería en el Sol al cabo de algo más de dos meses.
Es fácil comprender que la sencilla fórmula obtenida más arriba, basándonos en la tercera ley de Kepler, no solo se aplica a la Tierra, sino a cualquier otro planeta y aun a cada uno de los satélites. En otras palabras, que para saber en cuánto tiempo caería un planeta o un satélite sobre su astro central es necesario dividir su período de revolución por raíz cuadrada de 32, o sea, por 5,65.
Así, por ejemplo, Mercurio, el planeta más próximo al Sol caería en el Sol en 15½ días Neptuno, cuyo “año” es igual a 165 años terrestres, caería en el Sol en 29 años, y Plutón, en 44 años.
¿En cuánto tiempo caería sobre la Tierra la Luna si detuviera bruscamente su carrera?
Dividamos el tiempo de revolución de la Luna, 27,3 días, por 5,6, y nos da, casi exactamente, 5 días. Y no sólo la Luna, sino cualquier otro cuerpo que se encontrara a la misma distancia de nosotros que la Luna caería en la Tierra al cabo de 5 días, siempre que no poseyera ninguna velocidad inicial y sólo estuviera sometido a la influencia de la atracción terrestre (despreciamos la influencia del Sol, para simplificar). Utilizando la misma fórmula, es fácil calcular el tiempo que duraría el viaje a la Luna de que habla Julio Verne en su novela De la Tierra a la Luna[9].