6. El lado visible y el lado invisible de la luna

Entre los efectos proporcionados por el estereoscopio, ninguno es tan llamativo como el aspecto de la Luna. Con el estereoscopio uno comprueba que la Luna es esférica, mientras que al mirarla directamente, parece plana, es decir, con forma de plato.

Pero muchos ni siquiera imaginan cuán difícil es obtener una fotografía estereoscópica de nuestro satélite. Para lograrla es necesario conocer muy bien las características de los caprichosos movimientos del astro nocturno.

El problema consiste en que la Luna da vueltas alrededor de la Tierra de tal modo que siempre dirige la misma cara hacia nuestro planeta. Mientras gira alrededor de la Tierra, la Luna gira al mismo tiempo alrededor de su eje, y ambos movimientos se completan en el mismo espacio de tiempo[4].

En la figura 39 se ve una elipse que representa la órbita de la Luna. En el dibujo se exagera, de manera intencional, el estiramiento de la elipse de la trayectoria que describe la Luna; realmente la excentricidad de la órbita de la Luna es de 0,055 ó 1/18. Resulta imposible representar en un pequeño dibujo, la órbita de la Luna, de manera que se pueda distinguir de una circunferencia: dando al semieje mayor una magnitud de 1 m, el semieje menor sería más corto que él solo en 1,5 mm; la Tierra distaría del centro solo 5,5 cm. Para que resulte más fácil entender la explicación que sigue, en el dibujo se ha trazado una elipse más estirada.

Figura 39. Movimiento de la Luna en su órbita alrededor de la Tierra (Detalles en el texto)

Imaginemos que la elipse de la figura 39 corresponde a la trayectoria de la Luna alrededor de la Tierra. La Tierra está situada en el punto O, en uno de los focos de la elipse. Las leyes de Kepler no se refieren solamente al movimiento de los planetas alrededor del Sol, sino también al movimiento de los satélites alrededor de los planetas centrales, en particular a la revolución de la Luna. De acuerdo con la segunda ley de Kepler, la Luna, en un cuarto de mes, recorre un camino AE tal que la superficie OABCDE es igual a un cuarto de la superficie de la elipse, es decir, a la superficie MABCD (se confirma la igualdad de las superficies OAE y MAD de nuestro dibujo, por la igualdad aproximada de las superficies MOQ y EQD). De modo que en un cuarto de mes, la Luna recorre el camino que va de la A a la E. La rotación de la Luna (como se produce, en general, la rotación de los planetas, a diferencia de su revolución alrededor del Sol) se produce de manera uniforme: en un cuarto de mes gira exactamente 90º. Por esto, cuando la Luna se encuentra en E, el radio de la Luna dirigido hacia la Tierra en el punto A habrá descrito un arco de 90º y estará dirigido no hacia el punto M, sino hacia algún otro punto a la izquierda de M, no lejos del otro foco P de la órbita de la Luna. Si bien, la Luna oculta un poco su cara al observador ubicado en la Tierra, por la izquierda, éste puede ver por el lado derecho una franja estrecha de la otra mitad de la Luna, no visible antes. En el punto F, la Luna muestra al observador ubicado en la Tierra, una franja más estrecha, de su cara oculta, porque el ángulo OFP es menor que el ángulo OEP. En el punto G, en el “apogeo” de la órbita, la Luna ocupa la misma posición con relación a la Tierra, que en el “perigeo” A[5].

En sus movimientos posteriores, la Luna se vuelve respecto a la Tierra en sentido contrario, y muestra al observador ubicado en nuestro planeta, otra estrecha franja de su cara oculta; esta franja se ensancha al principio, luego se reduce, y, en el punto A, la Luna vuelve a ocupar la posición anterior.

Vemos así que, a consecuencia de la forma elíptica de su órbita, nuestro satélite no tiene siempre la misma cara dirigida hacia la Tierra. Invariablemente, la Luna tiene la misma cara dirigida hacia el otro foco de su órbita, y no hacia la Tierra. Para nosotros la Luna oscila alrededor de su posición media en forma semejante a una balanza, y de ahí que los astrónomos llamen a este balanceo “libración”, de la palabra latina “libra”, que significa balanza. La magnitud de la libración en cada punto se mide por el ángulo correspondiente; por ejemplo, en el punto E, la libración es igual al ángulo OEM. El valor máximo de la libración es de 7º 53’, es decir, casi 8º.

Es interesante observar cómo aumenta y disminuye el ángulo de libración, con el desplazamiento de la Luna a través de su órbita. Pongamos la punta de un compás en D, y tracemos un arco que pase por los focos O y P. Este arco corta la órbita en los puntos B y F. Los ángulos OBP y OFP, por ser inscritos, son iguales a la mitad del ángulo central ODP. De donde deducimos que, durante el movimiento de la Luna de A a D, la libración crece al principio rápidamente, en el punto B alcanza la mitad del máximo y, después, continúa creciendo lentamente; entre D y F disminuye la libración, al principio lentamente, luego rápidamente. En la segunda mitad de la elipse, la libración cambia de magnitud con el mismo ritmo, pero en sentido inverso. (El valor de la libración en cada punto de la órbita es proporcional a la distancia de la Luna al eje mayor de la elipse.)

El balanceo de la Luna que acabamos de examinar, se llama libración en longitud. Nuestro satélite está sujeto también a otra libración en latitud. El plano de la órbita de la Luna está inclinado sobre el plano del Ecuador de la Luna 6½º. Por eso vemos la Luna en unos casos desde el Sur y en otros desde el Norte, y podemos observar una franja pequeñísima de la cara “oculta” de la Luna, más allá de sus polos. Esta libración en latitud alcanza 6½º.

Expliquemos ahora cómo aprovecha el astrónomo el suave balanceo de la Luna alrededor de su posición media para obtener fotografías estereoscópicas.

El lector se da cuenta seguramente de que para esto es necesario elegir dos posiciones de la Luna tales que en una de ellas presente un giro con relación a la otra suficientemente grande.

En los puntos A y B, B y C, C y D, etc., la Luna ocupa posiciones tan distintas con relación a la Tierra, que hacen posibles las fotografías estereoscópicas. Pero aquí tenemos una nueva complicación: en estas posiciones la diferencia de tiempo de la Luna (de 1½ a 2 días) es demasiado grande, al punto que la franja de la superficie de la Luna próxima al círculo iluminado, ya sale de la sombra. Esto es inadmisible en fotografías estereoscópicas (esa franja brillaría como si fuera de plata). Surge un difícil problema: encontrar dos fases iguales de la Luna con una diferencia de libración (en longitud) tan pequeña, que el borde del círculo iluminado pase por los mismos puntos de la superficie lunar. Pero esto tampoco es suficiente; en ambas posiciones, la libración también debe tener igual latitud[6].

Ya vemos lo difícil que es obtener buenas estereofotografías de la Luna, y no se sorprendan al saber que a menudo una fotografía de un par estereoscópico se hace unos años después de la otra.

Nuestros lectores quizá no piensen hacer estereofotografías de la Luna. Acá se explica el procedimiento para obtenerlas, naturalmente, no con una finalidad práctica, sino sólo para mostrar que las características del movimiento de la Luna, dan a los astrónomos la posibilidad de ver una franja no muy grande de su cara oculta desde nuestro satélite. Gracias a ambas libraciones de la Luna, vemos el 59% de su superficie, y no su mitad. Inaccesible a nuestra vista, queda el 41%. Nadie sabe que apariencia tiene esta parte de la superficie lunar; puede suponerse, a lo sumo, que no difiere de la parte visible[7].

Se han hecho ingeniosos ensayos, prolongando hacia atrás, las cordilleras y las franjas iluminadas de la Luna, que salen de la parte invisible a la parte visible, para hacer conjeturas de algunos detalles de la mitad que no podemos ver. Resulta imposible por ahora, probar tales conjeturas. Decimos que por ahora, y no sin fundamento, pues hace tiempo que se estudian procedimientos para volar alrededor de la Luna en algún vehículo que sea capaz de superar la atracción de la Tierra y desplazarse en el espacio interplanetario (ver mi libro Viajes interplanetarios). Ya no estamos muy lejos de la realización de esta audaz empresa. Por el momento se sabe una cosa: que carece de fundamento la hipótesis, tantas veces planteada, sobre la existencia de atmósfera y agua en el lado invisible de la Luna, y contradice las leyes de la física; si no hay atmósfera y agua en un lado de la Luna, no puede haberlas tampoco en el otro lado. Luego volveremos a tratar este tema.

Astronomía recreativa
titlepage.xhtml
sec_0001.xhtml
sec_0002.xhtml
sec_0003.xhtml
sec_0004.xhtml
sec_0005.xhtml
sec_0006.xhtml
sec_0007.xhtml
sec_0008.xhtml
sec_0009.xhtml
sec_0010.xhtml
sec_0011_split_000.xhtml
sec_0011_split_001.xhtml
sec_0012.xhtml
sec_0013.xhtml
sec_0014.xhtml
sec_0015.xhtml
sec_0016.xhtml
sec_0017.xhtml
sec_0018.xhtml
sec_0019.xhtml
sec_0020.xhtml
sec_0021.xhtml
sec_0022.xhtml
sec_0023.xhtml
sec_0024.xhtml
sec_0025.xhtml
sec_0026.xhtml
sec_0027.xhtml
sec_0028.xhtml
sec_0029.xhtml
sec_0030.xhtml
sec_0031.xhtml
sec_0032.xhtml
sec_0033.xhtml
sec_0034.xhtml
sec_0035.xhtml
sec_0036.xhtml
sec_0037.xhtml
sec_0038.xhtml
sec_0039.xhtml
sec_0040.xhtml
sec_0041.xhtml
sec_0042.xhtml
sec_0043.xhtml
sec_0044.xhtml
sec_0045.xhtml
sec_0046.xhtml
sec_0047.xhtml
sec_0048.xhtml
sec_0049.xhtml
sec_0050.xhtml
sec_0051.xhtml
sec_0052.xhtml
sec_0053.xhtml
sec_0054.xhtml
sec_0055.xhtml
sec_0056.xhtml
sec_0057.xhtml
sec_0058.xhtml
sec_0059.xhtml
sec_0060.xhtml
sec_0061.xhtml
sec_0062.xhtml
sec_0063.xhtml
sec_0064.xhtml
sec_0065.xhtml
sec_0066.xhtml
sec_0067.xhtml
sec_0068.xhtml
sec_0069.xhtml
sec_0070.xhtml
sec_0071.xhtml
sec_0072.xhtml
sec_0073.xhtml
sec_0074.xhtml
sec_0075.xhtml
sec_0076.xhtml
sec_0077.xhtml
sec_0078.xhtml
sec_0079.xhtml
sec_0080.xhtml
sec_0081.xhtml
sec_0082.xhtml
sec_0083.xhtml
sec_0084.xhtml
sec_0085.xhtml
sec_0086.xhtml
sec_0087.xhtml
sec_0088.xhtml
sec_0089.xhtml
sec_0090.xhtml
sec_0091.xhtml
sec_0092.xhtml
sec_0093.xhtml
sec_0094.xhtml
sec_0095.xhtml
sec_0096.xhtml