2. El peso a gran altura

En los cálculos anteriores hicimos figurar una circunstancia sobre la cual no hemos llamado hasta ahora la atención del lector. Se trata de que a medida que un cuerpo se aleja de la Tierra, la fuerza de la gravedad disminuye.

La gravedad no es otra cosa que una manifestación de la gravitación universal, y la fuerza recíproca de atracción de dos cuerpos disminuye rápidamente cuando la distancia entre ellos aumenta. De acuerdo con la ley de Newton, la fuerza de atracción disminuye proporcionalmente al cuadrado de la distancia; en nuestro caso debe contarse la distancia desde el centro de la esfera terrestre, porque la Tierra atrae a todos los cuerpos como si su masa estuviera concentrada en su centro. Por esto, la fuerza de atracción a la altura de 6.400 km, es decir, en un punto alejado 2 radios terrestres del centro de la Tierra, es cuatro veces menor comparada con la fuerza de atracción en la superficie de la Tierra.

Esto se debe manifestar para una bala de cañón arrojada hacia arriba, haciendo que la bala se eleve más que en el caso de que la gravedad no disminuya con la altura. Para la bala arrojada verticalmente, hacia arriba, con una velocidad de 8.000 m por segundo, aceptamos que se elevará a una altura de 6.400 km. En cambio, si se calcula la altura de la elevación de este proyectil por la fórmula conocida, sin tener en cuenta la disminución de la gravedad con la altura, se obtiene una altura dos veces menor. Hagamos este cálculo. En los textos de física y de mecánica se encuentra la fórmula para el cálculo de la altura h a la que se eleva un cuerpo arrojado verticalmente, hacia arriba, con una velocidad v, para una aceleración constante g, de la fuerza de la gravedad:

En nuestro caso v = 8.000 m/s, g = 9,8 m/s2, y tenemos

Esta es casi la mitad de la altura indicada anteriormente. La divergencia obedece, como acabamos de decir, a que al utilizar la fórmula dada en los libros de texto, no tenemos en cuenta la disminución de la gravedad con la altura.

Queda claro que si la Tierra atrae la bala más débilmente, ésta tiene que elevarse a mayor altura, a la velocidad dada.

No debe concluirse precipitadamente que las fórmulas que figuran en los libros de texto para el cálculo de la altura que alcanza un cuerpo arrojado hacia arriba, no son exactas. Son exactas dentro de los límites previstos para ellas, y resultan inexactas tan pronto como el calculista se sale de los límites indicados. Estas fórmulas son aplicables cuando se trata de alturas muy pequeñas, para las que la disminución de la gravedad es tan insignificante, que se puede despreciar. Así, en el caso de la bala arrojada hacia arriba con una velocidad inicial de 300 m/s, la disminución de la gravedad es imperceptible.

Pero he aquí un interesante problema: ¿Se percibe la disminución de la fuerza de la gravedad a las alturas alcanzadas por los aviones y los aeróstatos modernos? ¿Se observa a estas alturas la disminución del peso de los cuerpos? En el año 1936 el aviador Vladimir Kokkinaki[7], subió con su aeronave, algunas cargas a gran altura: ½ tonelada á 11.458 m de altura; 1 tonelada á 12.100 m de altura, y 2 toneladas á 11.295 m de altura. Surge la pregunta: ¿a las alturas indicadas, mantenían estas cargas su peso original, o disminuían notablemente su peso allá arriba? A primera vista da la impresión de que la elevación sobre la superficie de la Tierra, a un poco más de diez kilómetros, no disminuye el peso de una carga de manera apreciable, en un planeta tan grande como la Tierra. En la superficie de la Tierra el peso dista del centro de nuestro planeta 6.400 km; un ascenso de 12 km aumenta esta distancia hasta 6.412 km; el aumento parece demasiado pequeño para que pueda influir en el peso. Sin embargo, el cálculo dice otra cosa: se presenta una pérdida apreciable de peso.

Hagamos el cálculo para uno de los casos descritos, por ejemplo, para el ascenso de Kokkinaki con una carga de 2.000 kg á 11.295 m. (Su distancia al centro de la Tierra será: 6.400 kms + 11,295 km 6.411,3 km).

A esta altura el avión se encuentra una 6.411,3/6.400 veces más lejos del centro del globo terrestre que en el momento de su partida. La fuerza de atracción disminuye allí (de acuerdo con la ley de Newton, la fuerza de atracción disminuye proporcionalmente al cuadrado de la distancia):

(6.411,3/6.400)2

es decir

1 + (6.411,3/6.400)2 veces

Por consiguiente, el peso a la altura indicada debe ser:

2000/(6.411,3/6.400)2 kg

Si se efectúa este cálculo (para lo cual es cómodo utilizar los métodos del cálculo aproximado)[8], se ve que la carga de 2.000 kg a la altura indicada pesaría sólo 1.993 kg, con lo que sería 7 kg más liviana. La disminución del peso es bastante sensible. Una pesa de un kilogramo a esa altura tiraría en una balanza de resorte sólo como 996,5 g; se perderían 3,5 g de peso.

Nuestros aeronautas, que alcanzaron una altura de 22 km, debieron encontrar una pérdida de peso mayor: 7 g por kilogramo.

En el ascenso “record” del aviador Iumashev, que se elevó en 1936 con una carga de 5.000 kg a una altura de 8.919 m, puede calcularse para este peso una pérdida global de 14 kg.

En el mismo año 1936 el aviador M. Y. Alekseev elevó a una altura de 12.695 m una carga de 1 toneladas, el aviador N. Nyujtikov elevó a una altura de 7.032 m una carga de 10 toneladas, etc.

Utilizando lo expuesto antes, el lector puede efectuar fácilmente el cálculo de la pérdida de peso en cada uno de estos casos.

Astronomía recreativa
titlepage.xhtml
sec_0001.xhtml
sec_0002.xhtml
sec_0003.xhtml
sec_0004.xhtml
sec_0005.xhtml
sec_0006.xhtml
sec_0007.xhtml
sec_0008.xhtml
sec_0009.xhtml
sec_0010.xhtml
sec_0011_split_000.xhtml
sec_0011_split_001.xhtml
sec_0012.xhtml
sec_0013.xhtml
sec_0014.xhtml
sec_0015.xhtml
sec_0016.xhtml
sec_0017.xhtml
sec_0018.xhtml
sec_0019.xhtml
sec_0020.xhtml
sec_0021.xhtml
sec_0022.xhtml
sec_0023.xhtml
sec_0024.xhtml
sec_0025.xhtml
sec_0026.xhtml
sec_0027.xhtml
sec_0028.xhtml
sec_0029.xhtml
sec_0030.xhtml
sec_0031.xhtml
sec_0032.xhtml
sec_0033.xhtml
sec_0034.xhtml
sec_0035.xhtml
sec_0036.xhtml
sec_0037.xhtml
sec_0038.xhtml
sec_0039.xhtml
sec_0040.xhtml
sec_0041.xhtml
sec_0042.xhtml
sec_0043.xhtml
sec_0044.xhtml
sec_0045.xhtml
sec_0046.xhtml
sec_0047.xhtml
sec_0048.xhtml
sec_0049.xhtml
sec_0050.xhtml
sec_0051.xhtml
sec_0052.xhtml
sec_0053.xhtml
sec_0054.xhtml
sec_0055.xhtml
sec_0056.xhtml
sec_0057.xhtml
sec_0058.xhtml
sec_0059.xhtml
sec_0060.xhtml
sec_0061.xhtml
sec_0062.xhtml
sec_0063.xhtml
sec_0064.xhtml
sec_0065.xhtml
sec_0066.xhtml
sec_0067.xhtml
sec_0068.xhtml
sec_0069.xhtml
sec_0070.xhtml
sec_0071.xhtml
sec_0072.xhtml
sec_0073.xhtml
sec_0074.xhtml
sec_0075.xhtml
sec_0076.xhtml
sec_0077.xhtml
sec_0078.xhtml
sec_0079.xhtml
sec_0080.xhtml
sec_0081.xhtml
sec_0082.xhtml
sec_0083.xhtml
sec_0084.xhtml
sec_0085.xhtml
sec_0086.xhtml
sec_0087.xhtml
sec_0088.xhtml
sec_0089.xhtml
sec_0090.xhtml
sec_0091.xhtml
sec_0092.xhtml
sec_0093.xhtml
sec_0094.xhtml
sec_0095.xhtml
sec_0096.xhtml