2. Cómo calculaban en la antigüedad

Desde hace mucho tiempo, la gente ya sabía contar. Los dedos de las manos constituyeron el primer instrumento natural para contar. De ahí vino la idea de un sistema decimal de numeración en muchos pueblos antiguos. Debemos decir que las operaciones aritméticas con los dedos sirvieron mucho tiempo como medio práctico para algunos pueblos, inclusive para los antiguos griegos. No debemos creer solo se puede contar hasta diez con los dedos. Por documentos de la literatura griega antigua, que han llegado hasta nosotros, sabemos que ya en los siglos V y IV antes de nuestra era se habían desarrollado considerablemente las operaciones con los dedos, alcanzando resultados que llegaban a miles.

Posteriormente, entre los egipcios, griegos, romanos y chinos, y en otros pueblos antiguos, aparece un instrumento para efectuar cálculos, que de acuerdo a su forma de manejo, recuerda nuestro ábaco. Su forma variaba de un pueblo a otro. Así, el ábaco griego era en sí, un tablero (mesa) que llevaba una cuadrícula (fig. 15), sobre dicho tablero se desplazaban fichas especiales que hacían el papel de las bolitas de los ábacos de nuestro tiempo. El ábaco romano estaba formado por un tablero de cobre con canales (ranuras), por los cuales se desplazaban unos botones.

Figura 15. Tablero y fichas utilizadas para efectuar operaciones aritméticas, antes del ábaco

En la antigua China, para la representación de los números en el tablero de cálculo, se empleaban palitos de 10 cm. de longitud y 1 cm. de espesor. Cerca del año 150 de nuestra era, ya eran ampliamente conocidos en China, los métodos para efectuar las cuatro operaciones aritméticas, en el tablero de cálculo.

Las cifras, en el tablero de cálculo chino, se podían representar de dos formas diferentes. Ambas se muestran en la fig. 16.

Para escribir los números en el tablero, se seguía el siguiente proceso: la primera cifra (leyendo de derecha a izquierda) se representaba por el primer método; la siguiente cifra, por el segundo método; la tercera cifra de nuevo se representaba por el primer método; la cuarta cifra por el segundo método, y así sucesivamente.

En otras palabras, todas las cifras de un número, que ocupaban lugares impares (leyendo de derecha a izquierda), se representaban por el primer método, y aquellas que se encontraban en los lugares pares, eran representadas por el segundo método.

Figura 16. Dos maneras de escribir las cifras, en el tablero de cálculo chino

Por ejemplo, los números 78639, 4576 y 1287 se representaban en el tablero de calcular como se ve en la fig. 17.

Figura 17. Ejemplos de construcción de algunos números en la tabla china de operaciones (o cálculos)

Ahora veremos cómo se efectuaban la adición, y la multiplicación, con este tablero de cálculo.

Adición [4]

Supongamos que se desea hallar la suma de los números 9876 y 5647.

Primeramente se les representa en el tablero de operaciones:

La adición se realizaba empezando con los órdenes superiores, es decir, desde la izquierda.

Primer Paso:

Sumemos los millares

9 + 5 = 14

Representamos esto así:

es decir, que formamos un segundo renglón sobre los sumandos, y a la izquierda, sobre la cifra 9, escribimos 14, de modo tal que la cifra 4 quede sobre la cifra 9, y transcribimos sin modificaciones, el resto del primer sumando. Sobre el segundo sumando, escribimos todas sus cifras, excepto la cifra 5, ya utilizada.

Segundo Paso:

Sumemos las centenas

8 + 6 = 14

y puesto que obtenemos en la adición una unidad de mayor orden, la agregarnos a la suma anteriormente obtenida.

Así quedará el tercer renglón (los dos primeros se dejan intactos)

en el tercer renglón a la izquierda se escribe 154, y después se repiten las dos últimas cifras (76) del primer sumando: a la derecha están repetidas las dos últimas cifras (47) del segundo sumando (sus cifras restantes ya han sido utilizadas).

Tercer Paso:

Sumemos las decenas

7 + 4 = 11,

con lo que el siguiente resultado es

el número 1551 se escribe a la izquierda, en el cuarto renglón:

Cuarto Paso:

ahora, falta solamente sumar las unidades

6 + 7 = 13

y la suma de los dos números dadas se determina: es igual a 15523:

el número 15523 obtenido, está escrito en el quinto renglón de la columna izquierda, y el esquema de la adición, finalmente, tiene el aspecto representado en la fig. 18.

Figura 18. En este dibujo se representa la suma de dos números, 9876 y 5647, según el tablero chino de cálculo

Multiplicación

En el tablero de cálculo de la antigua China, se iniciaba la multiplicación con las cifras de orden superior, pasando gradualmente a las cifras de órdenes menores. Además de esto, ya se empleaban las tablas de multiplicar.

Supongamos, a título de ejemplo, que se trata de multiplicar 346 por 27. El proceso de la multiplicación en la tabla de operaciones observado en nuestras notaciones, tomaba aproximadamente el siguiente aspecto:

Primero multiplicamos 3 por 2 y obtenemos 6; es decir, la cifra del orden más alto del producto (número de millares). Después, multiplicamos, 3 por 7 y 4 por 2, obteniendo 21 y 8 centenas; los escribimos debajo de la cifra 6, considerando los órdenes, como se indica.

Luego, multiplicamos 4 por 7 y 6 por 2 (esto nos da los números de 28 y 12), y finalmente, multiplicamos 7 por 6 para obtener 42 unidades: sumando las anteriores cantidades, obtenemos 9342.

El tablero de cálculo y la forma de operarlo, se conservaron en China hasta el siglo XIII.

En esta época se empezó a emplear el cero, el que con ayuda de los palitos de cálculo se representaba en forma de cuadrado.

Entonces, ya se podían representar también las fracciones decimales en el tablero de cálculo. Por ejemplo, los números 106368 y 6312 se representaban tal como se muestra en la figura 19.

Figura 19. Ejemplo de construcciones en la tabla de operaciones china. La combinación de los números 106 368 y 6312

En el siglo XV, en China y Japón ya se empleaba, para efectuar las cuatro operaciones aritméticas, un ábaco de siete bolitas en cada alambre (llamado en China "Swanpan" [5], y en Japón "Soroban") (ver la fig. 20). Estos instrumentos de cálculo se han conservado hasta nuestros días y su empleo es muy popular.

He aquí, por ejemplo, la opinión de un científico japonés: A pesar de su antigüedad, el soroban supera a todas las calculadoras modernas, gracias a su facilidad de manejo, a lo simple del dispositivo y a su bajo costo.

Figura 20. Abaco usado en China y Japón, con siete bolitas de marfil en cada alambre

El Abaco Ruso

Hay algunos objetos útiles que no valoramos lo suficiente debido a su constante manejo, lo que los ha convertido en objetos demasiado comunes de uso diario. A tal grupo de objetos poco estimados pertenece nuestro ábaco: aparato de cálculo muy popular, de origen ruso, el cual no es una modificación del famoso "ábaco" o "tablero de cálculo", de nuestros remotos antecesores.

En Occidente, en tanto, poco se sabe sobre los ábacos, y solo se dispone de algunos de gran tamaño, en grandes centros educativos: Un medio práctico para la enseñanza de los números a nivel escolar.

Con justa razón nos enorgullecemos de nuestro ábaco, puesto que gracias a este instrumento tan sencillo, pueden lograrse resultados a tal punto, que compite en ciertos aspectos con las calculadoras modernas. En unas manos hábiles, este sencillo instrumento hace con facilidad, verdaderas maravillas. Un especialista que trabajó antes de la revolución en una gran firma rusa vendedora de calculadoras, me contó que en más de una ocasión tuvo oportunidad de observar la admiración que despertaban los ábacos rusos, en los extranjeros importadores de modelos de complejos mecanismos de cálculo.

En vez de multiplicar por 7, multiplíquese el multiplicando por 10 y luego réstese el mismo tres veces.

La multiplicación por 8 da el mismo resultado que, restar el doble del multiplicando al producto de la multiplicación por diez.

Para multiplicar por 9, multiplíquese por diez y réstese el multiplicando.

Para multiplicar por 10, basta subir todo el número, un renglón.

Probablemente, el lector comprenderá cómo se debe proceder al multiplicar por números mayores que 10 y qué sustituciones resultan más convenientes. Así, en vez de 11 se usará 10 + 1, en vez de 12, 10 + 2.

Consideremos algunos casos especiales para multiplicadores, inferiores a cien:

Como se ve, con ayuda de los ábacos resulta más sencilla la multiplicación por 22, 33, 44, 55, etc., que por otros números: por tal razón, resulta de gran utilidad descomponer los multiplicadores, en números que contengan tales cifras.

También se recurre a métodos similares al multiplicar por números mayores que 100. Si tales métodos nos resultan agotadores, podemos recurrir al ábaco para realizar dichas operaciones, conforme a una regla general que consiste en multiplicar cada cifra del multiplicador, y escribir los productos parciales. Esto, desde luego, reduce el tiempo de cálculo.

División

Naturalmente, la división en el ábaco es más difícil que la multiplicación; para esto es necesario recordar una serie de métodos especiales, a veces bastante complicados. A quienes se interesen en ellos, les sugerimos, que consultar un manual especializado. Aquí indicamos sólo los métodos referentes a la división por números de una sola cifra (exceptuando el número 7, con el cual resulta demasiado complicada la división).

Ya sabemos cómo dividir entre 2, lo cual es bastante simple.

El método para dividir entre 3 es más complicado y consiste en multiplicar por la fracción periódica infinita 0,3333… (se sabe que 0,333…=1/3). Sabemos multiplicar por 3 con ayuda del ábaco; también podemos dividir entre 10; en este caso solo hay que trasladar el dividendo al alambre inmediatamente inferior. Después de practicar un poco, este método de división entre 3, muy largo a primera vista, resulta muy adecuado en la práctica.

La división entre 4, naturalmente, equivale a dividir 2 veces entre 2.

Más fácil aún es la división entre 5: basta multiplicar el número por 10, y dividir el resultado entre 2.

Entre 6, hay que seguir dos pasos: primero dividir entre 2, y luego dividir entre 3.

La división entre 7 es muy complicada con el ábaco, por lo que aquí no hablaremos de ella.

La división entre 8 equivale a dividir tres veces consecutivas entre 2.

Es muy interesante la división entre 9. Sabemos que 1/9 = 0,11111… Está claro aquí que, en lugar de la división entre 9 se pueden sumar sucesivamente 0,1 del dividendo con 0,01 del mismo, con 0,001,… etc. [6]

Como se ve es muy fácil dividir entre 2, 10 y 5, y naturalmente entre sus múltiplos 4, 8, 16, 20, 25, 32, 40, 50, 64, 80, 100. En estos casos, la división no representa obstáculo, incluso para quienes tienen poca experiencia en el manejo del ábaco.

Aritmética recreativa
titlepage.xhtml
sec_0001.xhtml
sec_0002.xhtml
sec_0003.xhtml
sec_0004.xhtml
sec_0005.xhtml
sec_0006.xhtml
sec_0007.xhtml
sec_0008.xhtml
sec_0009.xhtml
sec_0010.xhtml
sec_0011.xhtml
sec_0012.xhtml
sec_0013.xhtml
sec_0014.xhtml
sec_0015.xhtml
sec_0016.xhtml
sec_0017.xhtml
sec_0018.xhtml
sec_0019.xhtml
sec_0020.xhtml
sec_0021.xhtml
sec_0022.xhtml
sec_0023.xhtml
sec_0024.xhtml
sec_0025.xhtml
sec_0026.xhtml
sec_0027.xhtml
sec_0028.xhtml
sec_0029.xhtml
sec_0030.xhtml
sec_0031.xhtml
sec_0032.xhtml
sec_0033.xhtml
sec_0034.xhtml
sec_0035.xhtml
sec_0036.xhtml
sec_0037.xhtml
sec_0038.xhtml
sec_0039.xhtml
sec_0040.xhtml
sec_0041.xhtml
sec_0042.xhtml
sec_0043.xhtml
sec_0044.xhtml
sec_0045.xhtml
sec_0046.xhtml
sec_0047.xhtml
sec_0048.xhtml
sec_0049.xhtml
sec_0050.xhtml
sec_0051.xhtml
sec_0052.xhtml
sec_0053.xhtml
sec_0054.xhtml
sec_0055.xhtml
sec_0056.xhtml
sec_0057.xhtml
sec_0058.xhtml
sec_0059.xhtml
sec_0060.xhtml
sec_0061.xhtml
sec_0062.xhtml
sec_0063.xhtml
sec_0064.xhtml
sec_0065.xhtml
sec_0066.xhtml
sec_0067.xhtml
sec_0068.xhtml
sec_0069.xhtml
sec_0070.xhtml
sec_0071.xhtml
sec_0072.xhtml
sec_0073.xhtml
sec_0074.xhtml
sec_0075.xhtml
sec_0076.xhtml
sec_0077.xhtml
sec_0078.xhtml
sec_0079.xhtml
sec_0080.xhtml
sec_0081.xhtml
sec_0082.xhtml
sec_0083.xhtml
sec_0084.xhtml
sec_0085.xhtml
sec_0086.xhtml
sec_0087.xhtml
sec_0088.xhtml
sec_0089.xhtml
sec_0090.xhtml
sec_0091.xhtml
sec_0092.xhtml
sec_0093.xhtml
sec_0094.xhtml
sec_0095.xhtml
sec_0096.xhtml
sec_0097.xhtml
sec_0098.xhtml
sec_0099.xhtml
sec_0100.xhtml
sec_0101.xhtml
sec_0102.xhtml
sec_0103.xhtml
sec_0104.xhtml
sec_0105.xhtml
sec_0106.xhtml
sec_0107.xhtml
sec_0108.xhtml
sec_0109.xhtml
sec_0110.xhtml
sec_0111.xhtml
sec_0112.xhtml
sec_0113.xhtml