7. Numeración babilónica

El más interesante de todos los antiguos sistemas de numeración es el babilónico, que surgió aproximadamente en el año 2000 A. de N.E. Fue el primer sistema posicional de numeración, del que se tiene noticia. En este sistema se representaban los números solo con ayuda de dos símbolos, una cuña vertical V que representaba la unidad y una cuña horizontal para el número diez. Estas cuñas resaltaban en las tablillas de arcilla, por los palitos inclinados, y tomaban la forma de un prisma. De aquí surgió la denominación de cuneiforme [7] para la escritura de los antiguos babilonios.

Con la ayuda de los dos signos mencionados, se podían escribir todos los números enteros del 1 al 59, conforme a un sistema decimal, tal como ocurre en la numeración egipcia: es decir, que los signos para el diez y la unidad se repetían tantas veces como hubiese decenas y unidades en el número. Proporcionemos algunos ejemplos explicativos:

Hasta el momento no hemos encontrado nada nuevo. Lo nuevo empieza con la escritura del número 60 donde se utiliza el mismo signo que se emplea para el 1, pero con un mayor intervalo entre él y los signos restantes. Veamos algunos ejemplos aclaratorios:

De esta manera, ya podemos representar los números del 1 al 59 x 60 + 59 = 3599.

Enseguida está una unidad de un nuevo orden (es decir el número 1 x 60 x 60 = 3600), que también se representa por el signo para la unidad; por ejemplo:

De esta manera, la unidad de segundo orden representada por el mismo signo es 60 veces mayor que la de primer orden, y la unidad de tercer orden es 60 veces mayor que la de segundo orden y 3600 veces mayor (60 x 60 = 3600) que la unidad de primer orden. Y así sucesivamente.

Pero ustedes se preguntarán ¿qué sucede si no existe uno de los órdenes intermedios? ¿Cómo se escribe, por ejemplo, el número 1 x 60 x 60 + 23 = 3623? Si se escribiera de esta forma:

Se le podría confundir con el número 1 x 60 + 23 = 83. Para evitar confusiones se introdujo, posteriormente, el signo separador, que jugaba el mismo papel que juega el "cero" en nuestra numeración.

Así pues, con la ayuda de dicho signo separador, el número 3623 se escribirá así:

Nunca se colocaba el signo separador babilonio al final de un número; por tal razón, los números 3, 3 x 60 = 180, 3 x 60 x 60 = 10800, etc., se representaban de idéntica forma. Se convenía en determinar conforme al sentido del texto, a cuál de estos números se refería lo expuesto.

Resulta notable el que en la matemática babilónica, se empleara un mismo signo, tanto para escribir números enteros, como para escribir fracciones. Por ejemplo, las tres cuñas verticales escritas en fila, podían denotar 3/60, ó 3/60 x 60 = 3/3.600, ó 3/60 x 60 x 60 = 3/216.000

¿Qué podemos concluir sobre las particulares características de la numeración babilónica?

En primer lugar, observamos que este sistema de numeración es posicional. Así, un mismo signo puede representar en él, tanto 1, como 1 x 60, como 1 x 60 x 60 = 1 x 602 = 1 x 3600, etc., en función del lugar en que esté escrito dicho signo. Tal como ocurre en nuestro sistema de numeración, una cifra, por ejemplo, un 2, puede representar los números: 2, ó 2 x 10 = 20, ó 2 x 10 x 10 = 2 X 102 = 2 x 100 = 200, etc., dependiendo del orden en que se encuentre.

Sin embargo, el principio posicional, en la numeración babilónica, se lleva a cabo en órdenes sexagesimales. Por tal motivo, dicha numeración se llama sistema de numeración posicional sexagesimal. Los números hasta el 60 se escribían, en este sistema, tal como lo hacemos en el sistema decimal.

En segundo lugar la numeración babilónica permitía escribir de forma simple las fracciones sexagesimales, es decir, las fracciones con denominadores 60, 60 x 60 = 3600, 60 x 60 x 60 = 216 000, etc.

Las fracciones sexagesimales se utilizaron mucho en la época de los babilonios. Pero aún hoy dividimos 1 hora en 60 minutos, y 1 minuto en 60 segundos. De igual manera, dividimos la circunferencia en 360 partes, llamadas grados, un grado lo dividimos en 60 minutos, y dividimos un minuto en 60 segundos.

Como se ve, el sistema de numeración hindú, ampliamente usado por nosotros, está lejos de ser el único método de notación de los números.

Han existido también, otras formas para representar los números; así, por ejemplo, algunos comerciantes tenían sus signos secretos para anotar los números: se les llamaba, "claves" comerciales. Sobre ellas hablaremos ahora detenidamente.

Aritmética recreativa
titlepage.xhtml
sec_0001.xhtml
sec_0002.xhtml
sec_0003.xhtml
sec_0004.xhtml
sec_0005.xhtml
sec_0006.xhtml
sec_0007.xhtml
sec_0008.xhtml
sec_0009.xhtml
sec_0010.xhtml
sec_0011.xhtml
sec_0012.xhtml
sec_0013.xhtml
sec_0014.xhtml
sec_0015.xhtml
sec_0016.xhtml
sec_0017.xhtml
sec_0018.xhtml
sec_0019.xhtml
sec_0020.xhtml
sec_0021.xhtml
sec_0022.xhtml
sec_0023.xhtml
sec_0024.xhtml
sec_0025.xhtml
sec_0026.xhtml
sec_0027.xhtml
sec_0028.xhtml
sec_0029.xhtml
sec_0030.xhtml
sec_0031.xhtml
sec_0032.xhtml
sec_0033.xhtml
sec_0034.xhtml
sec_0035.xhtml
sec_0036.xhtml
sec_0037.xhtml
sec_0038.xhtml
sec_0039.xhtml
sec_0040.xhtml
sec_0041.xhtml
sec_0042.xhtml
sec_0043.xhtml
sec_0044.xhtml
sec_0045.xhtml
sec_0046.xhtml
sec_0047.xhtml
sec_0048.xhtml
sec_0049.xhtml
sec_0050.xhtml
sec_0051.xhtml
sec_0052.xhtml
sec_0053.xhtml
sec_0054.xhtml
sec_0055.xhtml
sec_0056.xhtml
sec_0057.xhtml
sec_0058.xhtml
sec_0059.xhtml
sec_0060.xhtml
sec_0061.xhtml
sec_0062.xhtml
sec_0063.xhtml
sec_0064.xhtml
sec_0065.xhtml
sec_0066.xhtml
sec_0067.xhtml
sec_0068.xhtml
sec_0069.xhtml
sec_0070.xhtml
sec_0071.xhtml
sec_0072.xhtml
sec_0073.xhtml
sec_0074.xhtml
sec_0075.xhtml
sec_0076.xhtml
sec_0077.xhtml
sec_0078.xhtml
sec_0079.xhtml
sec_0080.xhtml
sec_0081.xhtml
sec_0082.xhtml
sec_0083.xhtml
sec_0084.xhtml
sec_0085.xhtml
sec_0086.xhtml
sec_0087.xhtml
sec_0088.xhtml
sec_0089.xhtml
sec_0090.xhtml
sec_0091.xhtml
sec_0092.xhtml
sec_0093.xhtml
sec_0094.xhtml
sec_0095.xhtml
sec_0096.xhtml
sec_0097.xhtml
sec_0098.xhtml
sec_0099.xhtml
sec_0100.xhtml
sec_0101.xhtml
sec_0102.xhtml
sec_0103.xhtml
sec_0104.xhtml
sec_0105.xhtml
sec_0106.xhtml
sec_0107.xhtml
sec_0108.xhtml
sec_0109.xhtml
sec_0110.xhtml
sec_0111.xhtml
sec_0112.xhtml
sec_0113.xhtml