48 La constante cosmológica
Albert Einstein pensaba que vivimos en un universo estacionario en lugar de uno con un big bang. Al tratar de escribir las ecuaciones para éste, se encontró con un problema. Si sólo existiera la gravedad, todas las cosas del universo se colapsarían finalmente en un punto, quizá un agujero negro. Obviamente el universo real no era así y parecía estable. Así que Einstein añadió otro término a su teoría para contrarrestar la gravedad, una especie de término «antigravitatorio». Lo introdujo puramente para que sus ecuaciones fueran correctas, no porque conociera tal fuerza. Pero esta formulación se reveló inmediatamente como problemática.
Si hubiera una fuerza opuesta a la gravedad, igual que una gravedad sin límites podría provocar un colapso, la fuerza antigravedad podría con la misma facilidad amplificarse y fragmentar regiones del universo que no estuvieran unidas por la cohesión de la fuerza gravitatoria. En lugar de permitir esta ruptura del universo, Einstein prefirió ignorar su segundo término repulsivo y admitir que había cometido un error al introducirlo. Otros físicos también prefirieron excluirlo, relegándolo para la posteridad. O eso creyeron. El término no fue olvidado, fue conservado en las ecuaciones de la relatividad, pero su valor, la constante cosmológica, fue fijada como cero para descartarlo.
Universo en aceleración En la década de 1990, dos grupos de astrónomos que dibujaban un mapa de las supernovas de lejanas galaxias para medir la geometría del espacio, descubrieron que las distantes supernovas parecían más débiles de lo que deberían ser. Las supernovas, brillantes explosiones de estrellas moribundas, se presentan en varios tipos. Las supernovas del tipo Ia tienen una luminosidad predecible y por lo tanto resultan de gran utilidad para inferir las distancias. Igual que las estrellas variables Cefeidas, que se utilizaban para medir las distancias a las galaxias para establecer la ley de Hubble, la luminosidad intrínseca de las supernovas del tipo Ia se puede calcular a partir de su espectro de luz, por lo que es posible determinar lo lejos que se encuentran. Esto no funciona muy bien para las supernovas que están relativamente cerca, pero las supernovas más lejanas eran demasiado débiles. Era como si estuvieran más lejos de nosotros de lo que deberían estar.
«Durante 70 años hemos intentado medir el ritmo al que se desacelera el universo. Finalmente, lo hemos conseguido y descubrimos que se está acelerando.»
Michael S. Turner, 2001
A medida que se fueron descubriendo más supernovas, el patrón de debilitamiento ligado a la distancia comenzó a sugerir que la expansión del universo no era constante, como afirmaba la ley de Hubble, sino que era acelerada. Este hecho conmocionó a la comunidad cosmológica y en la actualidad todavía se intenta esclarecer.
Los resultados aportados por las supernovas encajaban con las ecuaciones de Einstein, pero sólo después de incluir un término negativo aumentando la constante cosmológica de cero a 0,7. Los resultados de las supernovas, interpretados junto con otros datos cosmológicos, como el patrón de la radiación de microondas de fondo, puso de manifiesto la necesidad de que una nueva fuerza repulsiva contrarrestara la gravedad. Pero era una fuerza bastante débil. Continúa siendo un misterio la causa por la que es tan débil, ya que no existe ninguna razón en especial para que no asuma un valor mucho mayor y llegue a dominar por completo el espacio prevaleciendo sobre la gravedad. En lugar de ello, su fuerza es muy próxima a la de la gravedad, de modo que tiene un sutil efecto sobre el espacio-tiempo tal y como lo percibimos en el presente. Este término de energía negativa se ha bautizado como «energía oscura».
«Ésta [la energía oscura] parece ser algo conectado con el propio espacio, y a diferencia de la materia oscura que gravita, tiene un efecto que parece ser el contrario, opuesto a la gravedad, que hace que el universo sea repelido por sí mismo.»
Brian Schmidt, 2006
Energía oscura El origen de la energía oscura continúa siendo esquivo. Todo cuanto sabemos es que es una forma de energía asociada al vacío del espacio libre, que ejerce una presión negativa en las regiones desprovistas de materia que atraiga la gravedad. Así pues, provoca que las regiones del espacio vacío se inflen. Conocemos su fuerza de modo aproximado a partir de las observaciones de las supernovas, pero no sabemos mucho más. No sabemos si realmente es una constante —si siempre adopta el mismo valor en todo el universo y durante todo el tiempo (como ocurre con la gravedad y la velocidad de la luz)—, o si su valor cambia con el tiempo de tal forma que podría tener un valor diferente justo después del big bang por contraste con su valor actual o futuro. En su forma más general, también se ha denominado «quintaesencia» o la quinta fuerza, la cual engloba todas las formas posibles en que su fuerza podría cambiar con el tiempo. Pero todavía no sabemos cómo se manifiesta esta fuerza esquiva o cómo surge en la física del big bang. Es un tema candente de estudio para los físicos.
Actualmente tenemos un conocimiento mucho mayor de la geometría del universo y de su composición. El descubrimiento de la energía oscura ha ocupado los textos de cosmología, resaltando la diferencia en la distribución de la energía en el universo entero. Ahora sabemos que un 4% es materia bariónica normal, un 23% materia exótica nobariónica y un 73% energía oscura. Estas cifras suman aproximadamente la materia adecuada para el «universo bien afinado» en equilibrio, próximo a la masa crítica donde no es ni cerrado ni abierto.
«Sin embargo, hay que poner el acento en que nuestros datos arrojan una curvatura positiva del espacio, aunque no se introduzca el término suplementario [constante cosmológica]. Ese término sólo es necesario con el propósito de hacer posible una distribución casi estática de la materia.»
Albert Einstein, 1918
Sin embargo, las misteriosas propiedades de la energía oscura significan que incluso conociendo la masa total del universo, su comportamiento futuro es difícil de predecir porque depende de si la influencia de la energía oscura aumenta o no en el futuro. Si el universo se acelera, entonces, en ese punto del tiempo, la energía oscura sólo será tan significativa como la gravedad en el control del universo. Pero, en algún punto determinado, la aceleración repuntará y una expansión más rápida superará la gravedad. De modo que el destino del universo quizá sea expandirse para siempre, cada vez más rápido. Se han propuesto algunos escenarios aterradores: una vez que la gravedad sea superada, las estructuras masivas que se mantienen débilmente unidas se desconectarán y se dispersarán, finalmente las propias galaxias se fragmentarán, y las estrellas se evaporarán en una neblina de átomos. En último término, la presión negativa fragmentaría los átomos, dejando tan sólo un sombrío mar de partículas subatómicas.
No obstante, aunque el rompecabezas cosmológico empieza a encajar y hemos medido una gran parte de los números que describen la geometría del universo, todavía quedan muchas cuestiones importantes sin responder. Sin ir más lejos, desconocemos el 95% del contenido del universo, y tampoco sabemos qué es realmente esta nueva fuerza de la quintaesencia. O sea que todavía no ha llegado la hora de dormirse en los laureles. El universo mantiene vivo su misterio.
Cronología:
1915 d. C.: Einstein publica la teoría general de la relatividad.
1929 d. C.: Hubble demuestra que el espacio se expande y Einstein abandona su constante.
1998 d. C.: Los datos de las supernovas señalan la necesidad de la constante cosmológica.
La idea en síntesis: la quinta fuerza