24 El efecto fotoeléctrico

El amanecer del siglo XX abrió una nueva puerta a la física. En el siglo XIX era sabido que la luz ultravioleta movilizaba electrones para producir corrientes en un metal; la comprensión de este fenómeno condujo a los físicos a inventar todo un nuevo lenguaje.

Bateadores azules El efecto fotoeléctrico genera corrientes eléctricas en los metales cuando se proyecta sobre ellos luz azul o ultravioleta, pero esto no ocurre con luz roja. Ni siquiera un rayo brillante de luz roja logra producir una corriente. La carga sólo circula cuando la frecuencia de la luz excede un umbral determinado, que varía según los metales. El umbral indica que es necesario generar una cierta cantidad de energía antes de que se puedan liberar las cargas. La energía necesaria para liberarlas tiene que proceder de la luz pero, a finales del siglo XIX, este mecanismo era desconocido. Las ondas electromagnéticas y las cargas en movimiento parecían fenómenos físicos muy diferentes y unirlos constituía un desafío de gran envergadura.

«Toda cuestión tiene dos caras.»

Pitágoras, 485-421 a. C.

Fotones En 1905, Albert Einstein aportó una idea radical para explicar el efecto fotoeléctrico. Fue este trabajo, y no la relatividad, el que le valió el Premio Nobel en 1921. Inspirado por el uso previo que Max Planck había hecho de los cuantos para cuantificar la energía de los átomos calientes, Einstein imaginó que la luz también podría existir en pequeños paquetes de energía. Einstein tomó prestada la definición matemática general de los cuantos de Planck, la proporcionalidad de la energía y la frecuencia unidas por la constante de Planck, y la aplicó a la luz en lugar de a los átomos. Los cuantos de luz de Einstein fueron llamados posteriormente fotones. Los fotones carecen de masa y viajan a la velocidad de la luz.

En lugar de envolver el metal con ondas lumínicas continuas, Einstein sugirió que los proyectiles fotones individuales chocan con los electrones que se mueven en el metal para producir el efecto fotoeléctrico. Como cada fotón transporta una cierta energía, proporcional a su propia frecuencia, la energía del electrón contra el que choca también es proporcional a la frecuencia de la luz. Un fotón de luz roja (con una baja frecuencia) carece de la energía suficiente para desplazar a un electrón, pero un fotón azul (luz con una frecuencia más elevada) tiene más energía y puede ponerlo en movimiento. Un fotón ultravioleta tiene una energía aún mayor, de modo que puede golpear con fuerza a un electrón e imprimirle una velocidad mayor. Si aumentamos el brillo de la luz no se producen cambios, independientemente de la cantidad de fotones rojos que haya, si ninguno de ellos es capaz de movilizar a los electrones. Es como disparar pelotas de ping-pong a un pesado vehículo todoterreno. La idea de los cuantos de luz de Einstein fue impopular al principio porque se oponía a la descripción de la luz como una onda, resumida en las ecuaciones de Maxwell que la mayor parte de los físicos reverenciaban. Sin embargo, el clima cambió cuando los experimentos demostraron que la extravagante idea de Einstein era cierta. Confirmaron que la energía de los electrones liberados aumentaba proporcionalmente con la frecuencia de la luz.

Dualidad onda-partícula La propuesta de Einstein no sólo fue controvertida, sino que planteó la incómoda idea de que la luz era a la vez una onda y una partícula, lo que se denomina dualidad onda-partícula. Hasta que Maxwell escribió sus ecuaciones, el comportamiento de la luz siempre había seguido el de la onda, rodeando los obstáculos, difractándose, reflejando y produciendo interferencias. Así las cosas, Einstein realmente creó un problema al mostrar que la luz también era una corriente de torpedos fotones.

ALBERT EINSTEIN (1879-1955)

1905 fue un annus mirabilis para el físico a tiempo parcial, nacido en Alemania, que trabajaba como funcionario de la Oficina Suiza de Patentes. Albert Einstein publicó tres artículos de física en un periódico alemán, Annalen der Physik. Explicaban el movimiento browniano, el efecto fotoeléctrico y la relatividad espacial, y cada uno de ellos fue un trabajo innovador. La reputación de Einstein creció hasta que, en 1915, desarrolló su teoría de la relatividad general y se hizo mundialmente famoso. En 1921, Einstein recibió el Premio Nobel por su trabajo sobre el efecto fotoeléctrico, que tuvo una gran repercusión en el desarrollo de la mecánica cuántica.

«La capa superficial del cuerpo es atravesada por cuantos de energía, y esta energía se convierte al menos parcialmente en energía cinética de los electrones. La concepción más sencilla es que un cuanto de luz transfiere toda su energía a un solo electrón.»

Albert Einstein, 1905

Los físicos todavía están debatiendo esta cuestión. En la actualidad, sabemos incluso que la luz sabe si debe comportarse como una u otra cosa en diferentes circunstancias. Si desarrollamos un experimento para medir sus propiedades como onda, por ejemplo, pasarla por una red de difracción, se comporta como una onda. Si en lugar de esto intentamos medir sus propiedades como partícula, es también cumplidora.

Los físicos han tratado de diseñar experimentos más inteligentes para capturar la luz y quizá desvelar su auténtica naturaleza, pero hasta ahora todos han fracasado. Muchos son variantes del experimento de la doble rendija de Young, pero con componentes que pueden cambiar dentro y fuera. Imaginemos una fuente de luz cuyos rayos pasan a través de dos estrechas rendijas hasta una pantalla. Con ambas rendijas abiertas vemos las familiares bandas claras y oscuras de los límites de interferencia. De modo que, según lo que sabemos, la luz es una onda. Sin embargo, al disminuir la luz lo suficiente, en algún punto determinado el nivel baja tanto que los fotones individuales pasan por el aparato uno a uno y un detector captura los destellos cuando llegan a la pantalla. Incluso al hacer esto, los fotones continúan amontonándose en el patrón de interferencia rayado.

Placas solares

El efecto fotoeléctrico se utiliza actualmente en los paneles solares en los que la luz libera electrones, normalmente procedentes de materiales semiconductores, como la silicona, en lugar de materiales puros.

Entonces, ¿cómo sabe un fotón si debe dirigirse por una u otra de las rendijas para formar el patrón de interferencia? Si va usted rápido, puede cerrar una de las rendijas antes de que el fotón haya abandonado la fuente de luz o incluso después de que haya pasado por las rendijas, pero antes de que alcance la pantalla. En todos los casos que los físicos han logrado analizar, los fotones sabían si había una o dos rendijas cuando pasaron. Y aunque sólo pasan fotones individuales, parece que cada fotón pasa por ambas rendijas simultáneamente.

Coloque un detector en una de las rendijas (así sabrá si el fotón pasó por ésa o por la otra) y por extraño que parezca el patrón de interferencia desaparece: en la pantalla sólo queda un simple grupo de fotones sin bandas de interferencia. Así que no importa sus esfuerzos por capturarlos, los fotones saben cómo actuar. Y actúan como ondas y como partículas, y no como una u otra.

Ondas de materia En 1924, Louis-Victor de Broglie sugirió la idea contraria, que las partículas de materia también se comportaban como ondas. Proponía que todos los cuerpos tienen una longitud de onda asociada, lo que implica que la dualidad partícula-onda era universal. Tres años después la idea onda-materia fue confirmada cuando se comprobó que los electrones difractaban y producían interferencias igual que la luz. Los físicos han observado ahora partículas mayores que se comportan como ondas, por ejemplo, los neutrones, los protones y recientemente incluso moléculas incluyendo las esferas microscópicas de carbono o «buckyesferas». Objetos de mayor tamaño, como los cojinetes de bolas y las brocas, tienen longitudes de onda minúsculas, demasiado pequeñas para poder verlas. Así que no podemos constatar que se comporten como ondas. Una pelota de tenis que atraviesa una pista volando tiene una longitud de onda de 10-34 metros, mucho menor que el ancho de un protón (10-15 m).

Como hemos visto, la luz también es una partícula y los electrones a veces son ondas; el efecto fotoeléctrico ha completado el círculo.

Cronología:

1839 d. C.: Alexandre Becquerel observa el efecto fotoeléctrico.

1887 d. C.: Hertz mide chispas eléctricas entre agujeros causadas por la luz ultravioleta.

1899 d. C.: J. J. Thomson confirma que los electrones son generados por la luz incidente.

1901 d. C.: Planck introduce el concepto de cuantos de energía.

1905 d. C.: Einstein propone la teoría de los cuantos de luz.

1924 d. C.: De Broglie propone que las partículas pueden comportarse como ondas.

La idea en síntesis: proyectiles fotones

50 cosas que hay que saber sobre física
cubierta.xhtml
sinopsis.xhtml
titulo.xhtml
info.xhtml
Introduccion.xhtml
MateriaEnMovimiento.xhtml
01PrincipioDeMach.xhtml
02LasLeyesDelMovimientoDeNewton.xhtml
03LasLeyesDeKepler.xhtml
04LaLeyDeLaGravedadDeNewton.xhtml
05LaConservacionDeLaEnergia.xhtml
06ElMovimientoArmonicoSimple.xhtml
07LaLeyDeHooke.xhtml
08LeyDeLosGasesIdeales.xhtml
09SegundaLeyDeLaTermodinamica.xhtml
10CeroAbsoluto.xhtml
11ElMovimientoBrowniano.xhtml
12TeoriaDelCaos.xhtml
13LaEcuacionDeBernoulli.xhtml
LasOndas.xhtml
14TeoriaDelColorDeNewton.xhtml
15PrincipioDeHuygens.xhtml
16LaLeyDeSnell.xhtml
17LeyDeBragg.xhtml
18LaDifraccionDeFraunhofer.xhtml
19ElEfectoDoppler.xhtml
20LaLeyDeOhm.xhtml
21LaReglaDeLaManoDerechaDeFleming.xhtml
22LasEcuacionesDeMaxwell.xhtml
EnigmasCuanticos.xhtml
23LaLeyDePlanck.xhtml
24ElEfectoFotoelectrico.xhtml
25LaEcuacionDeOndasDeSchrodinger.xhtml
26ElPrincipioDeIncertidumbreDeHeisenberg.xhtml
27LaInterpretacionDeCopenhague.xhtml
28ElGatoDeSchrodinger.xhtml
29LaParadojaEPR.xhtml
30ElPrincipioDeExclusionDePauli.xhtml
31Super-Conductividad.xhtml
LaDivisionDeLosAtomos.xhtml
32ElAtomoDeRutherford.xhtml
33Antimateria.xhtml
34FisionNuclear.xhtml
35FusionNuclear.xhtml
36ElModeloEstandar.xhtml
37DiagramasDeFeynman.xhtml
38LaParticulaDivina.xhtml
39TeoriaDeCuerdas.xhtml
EspacioYTiempo.xhtml
40RelatividadEspecial.xhtml
41RelatividadGeneral.xhtml
42AgujerosNegros.xhtml
43LaParadojaDeOlbers.xhtml
44LaLeyDeHubble.xhtml
45ElBigBang.xhtml
46LaInflacionCosmica.xhtml
47LaMateriaOscura.xhtml
48LaConstanteCosmologica.xhtml
49LaParadojaDeFermi.xhtml
50ElPrincipioAntropico.xhtml
Glosario.xhtml
autor.xhtml