31 Superconductividad

Cuando se enfría a unos cuantos grados por encima del cero absoluto, el mercurio conduce la electricidad sin ningún tipo de resistencia. Esto fue descubierto en 1911 por el físico holandés Heike Onnes, cuando vertió mercurio en helio líquido a una temperatura de 4,2 k (grados por encima del cero absoluto). Al no ofrecer resistencia a la corriente, se detectó el primer material superconductor. Al cabo de poco, se observó un comportamiento similar en otros metales fríos incluido el plomo y en compuestos tales como el nitruro de niobio. Toda resistencia desaparecería por debajo de una cierta temperatura crítica que variaba según los materiales.

Movimiento continuo Una consecuencia de la resistencia cero es que si ponemos en circulación una corriente por un superconductor ésta puede fluir para siempre. En el laboratorio, las corrientes se han logrado mantener durante muchos años y los físicos estiman que una corriente así se prolongaría durante miles de millones de años antes de perder energía. Es lo máximo que se han aproximado los científicos al movimiento continuo.

Pensamiento de grupo Los físicos se sorprendieron al comprobar que una transición de tal magnitud podía producirse a bajas temperaturas. La temperatura crítica indicaba una rápida transición de fase, así que los físicos se fijaron en el comportamiento cuántico de los electrones en un metal. La mecánica cuántica ofrecía algunas claves y en la década de 1950 se expusieron varias ideas. En 1957, los físicos norteamericanos John Bardeen, Leon Cooper y John Schrieffer propusieron una explicación completa y convincente de la superconductividad en los metales y las aleaciones simples que actualmente se denomina teoría BCS. Ésta sugería que la superconductividad se produce a causa del extraño comportamiento de los electrones cuando se unen formando parejas.

Superfluidos

Los superfluidos son fluidos que carecen de viscosidad, de modo que pueden fluir por una tubería interminable sin ninguna fricción. La superfluidez se conoce desde los años treinta. Un ejemplo es el helio-4 superenfriado (peso atómico 4, compuesto por dos protones, dos neutrones y dos electrones). Los átomos del helio-4 son bosones, formados por pares de fermiones.

Los superfluidos se comportan de forma muy extraña cuando se colocan en un recipiente: fluyen formando una capa del espesor de un átomo en la parte superior del recipiente. Se puede crear una fuente si se inserta y se calienta un tubo capilar porque el superfluido no puede mantener un gradiente de temperatura (tiene conductividad térmica infinita) y el calor provoca de inmediato un cambio de presión. Si tratamos de girar un cubo de superfluido (véase 01 Principio de Mach), ocurre algo muy extraño. Como no tiene viscosidad, el fluido no comienza a girar inmediatamente, sino que permanece en reposo. Si giramos el cubo con mayor rapidez, en algún punto crítico el superfluido comienza repentinamente a girar. Su velocidad está cuantizada —el superfluido sólo gira a ciertos valores.

Las parejas de electrones, llamadas pares de Cooper, interactúan con el entramado de átomos del metal por medio de las vibraciones que los unen. Un metal es una red de núcleos cargados positivamente en la cual flota libremente un «mar» de electrones. Si el metal está muy frío y la red está en calma, cuando pasa un electrón cargado negativamente distorsiona ligeramente los puntos positivos de la red y los arrastra hacia fuera formando un bucle similar a una onda. Otro electrón que se mueva cerca puede ser atraído a esta zona de una carga positiva más intensa y ambos electrones se emparejan. El segundo electrón sigue al primero a todas partes. Esto sucede en todo el metal y muchos pares sincronizados de electrones se unen en un patrón de ondas en movimiento.

Condensados de Bose-Einstein

A muy bajas temperaturas, los grupos de bosones se comportan de forma muy extraña. Cerca del cero absoluto, muchos bosones pueden encontrarse en el mismo estado cuántico, haciendo visible el comportamiento cuántico a escalas mucho mayores. Predicho por Albert Einstein y basado en las ideas de Bose, los llamados condensados de Bose-Einstein no fueron creados en un laboratorio hasta 1995. Eric Cornell y Carl Wieman, de la Universidad de Colorado, y un poco más tarde Wolfgang Ketterle del MIT, observaron este comportamiento en un gas de átomos de rubidio que se había enfriado a 170.000 millonésimas de kelvin. En los condensados de Bose-Einstein, todos los átomos arracimados tienen la misma velocidad, ensombrecida tan sólo por el principio de incertidumbre de Heisenberg. Los condensados de Bose-Einstein se comportan como superfluidos. Los bosones pueden compartir estados cuánticos entre sí. Einstein especuló con la idea de que al enfriar bosones por debajo de una temperatura crítica, esto les haría caer (o «condensarse») en el estado cuántico de mínima energía, siendo el resultado una nueva forma de materia. Los condensados de Bose-Einstein se alteran con una gran facilidad, por lo que aún es pronto para aplicaciones prácticas.

Un solo electrón tiene que seguir el principio de exclusión de Pauli, que prohíbe que esas partículas con funciones de onda asimétricas (fermiones) compartan el mismo estado cuántico. Por consiguiente, cuando hay muchos electrones, si se encuentran en la misma zona, tienen que tener una energía diferente entre sí. Pero cuando los electrones se emparejan y se comportan como una única partícula, ya no siguen este comportamiento. Su función de onda general pasa a ser simétrica y juntos ya no son fermiones, sino bosones. Y como bosones, los pares de electrones pueden compartir la misma energía mínima. Como resultado aparecen conjuntos de pares que tienen una energía general ligeramente inferior a la de los electrones libres en el metal. Es esta diferencia de energía la que provoca una rápida transición de propiedades a la temperatura crítica.

Cuando la energía calorífica de la red es menor que su descenso de energía, observamos un flujo continuo de pares de electrones unido a las vibraciones de la red que caracteriza la superconductividad. Como las ondas de la red dirigen los movimientos a largas distancias por ésta, no hay resistencia: todos los pares de electrones se mueven unos respecto a otros. Evitando las colisiones con los átomos inmóviles de la red, los pares de electrones actúan como un superfluido que puede circular libremente. A temperaturas más cálidas, los pares de Cooper se quiebran y pierden sus propiedades de bosón. Los electrones pueden colisionar con los iones de la red, que ahora están calientes y vibran creando una resistencia eléctrica. La rápida transición intercambia los estados cuando los electrones cambian de flujos de bosones coordinados a fermiones erráticos o viceversa.

Superconductores de alta temperatura En la década de 1980, la superconductividad despegó. En 1986, los investigadores suizos descubrieron un nuevo tipo de materiales cerámicos que se convertían en superconductores a temperaturas relativamente altas: los llamados «superconductores de alta temperatura». Su primer compuesto, una combinación de lantano, bario, cobre y oxígeno (conocidos como óxidos de cobre o cupratos), ha realizado la transición a un comportamiento superconductor a 30 kelvin. Un año después, otros científicos diseñaron un material que se convertía en superconductor a temperaturas de aproximadamente 90 kelvin, más caliente que el refrigerante de nitrógeno líquido tan utilizado. Utilizando cerámica de perovskita y mercurio-cupratos (impregnados con talio), las temperaturas de superconductividad han alcanzado ya los 140 kelvin e incluso se pueden alcanzar temperaturas críticas superiores a altas presiones.

Se supone que estas cerámicas son aislantes, así que esto fue del todo inesperado. Los físicos todavía buscan una nueva teoría que explique la superconductividad de alta temperatura. Sin embargo, su desarrollo es actualmente un campo de la física en rápida expansión.

¿Para qué se utilizan los superconductores? Contribuyen a desarrollar potentes electroimanes, como los que se utilizan en los escáneres de resonancias magnéticas nucleares en los hospitales y en los aceleradores de partículas. Un día se podrán utilizar para los transformadores eficientes o incluso para trenes de levitación magnética. Pero como actualmente funcionan a muy bajas temperaturas, su utilización está algo limitada. De aquí que la investigación se centre en los superconductores de alta temperatura, que podrían tener implementaciones espectaculares.

Cronología:

1911 d. C.: Onnes descubre la superconductividad.

1925 d. C.: Se predicen los condensados de Bose-Einstein.

1933 d. C.: Se demuestra que los superconductores repelen los campos magnéticos.

década de 1940 d. C.: Se descubren compuestos superconductores.

1957 d. C.: Se propone la teoría de la superconductividad de BCS.

1986 d. C.: Se crean los superconductores de alta temperatura.

1995 d. C.: Los condensados de Bose-Einstein se fabrican en el laboratorio.

La idea en síntesis: la resistencia es inútil

50 cosas que hay que saber sobre física
cubierta.xhtml
sinopsis.xhtml
titulo.xhtml
info.xhtml
Introduccion.xhtml
MateriaEnMovimiento.xhtml
01PrincipioDeMach.xhtml
02LasLeyesDelMovimientoDeNewton.xhtml
03LasLeyesDeKepler.xhtml
04LaLeyDeLaGravedadDeNewton.xhtml
05LaConservacionDeLaEnergia.xhtml
06ElMovimientoArmonicoSimple.xhtml
07LaLeyDeHooke.xhtml
08LeyDeLosGasesIdeales.xhtml
09SegundaLeyDeLaTermodinamica.xhtml
10CeroAbsoluto.xhtml
11ElMovimientoBrowniano.xhtml
12TeoriaDelCaos.xhtml
13LaEcuacionDeBernoulli.xhtml
LasOndas.xhtml
14TeoriaDelColorDeNewton.xhtml
15PrincipioDeHuygens.xhtml
16LaLeyDeSnell.xhtml
17LeyDeBragg.xhtml
18LaDifraccionDeFraunhofer.xhtml
19ElEfectoDoppler.xhtml
20LaLeyDeOhm.xhtml
21LaReglaDeLaManoDerechaDeFleming.xhtml
22LasEcuacionesDeMaxwell.xhtml
EnigmasCuanticos.xhtml
23LaLeyDePlanck.xhtml
24ElEfectoFotoelectrico.xhtml
25LaEcuacionDeOndasDeSchrodinger.xhtml
26ElPrincipioDeIncertidumbreDeHeisenberg.xhtml
27LaInterpretacionDeCopenhague.xhtml
28ElGatoDeSchrodinger.xhtml
29LaParadojaEPR.xhtml
30ElPrincipioDeExclusionDePauli.xhtml
31Super-Conductividad.xhtml
LaDivisionDeLosAtomos.xhtml
32ElAtomoDeRutherford.xhtml
33Antimateria.xhtml
34FisionNuclear.xhtml
35FusionNuclear.xhtml
36ElModeloEstandar.xhtml
37DiagramasDeFeynman.xhtml
38LaParticulaDivina.xhtml
39TeoriaDeCuerdas.xhtml
EspacioYTiempo.xhtml
40RelatividadEspecial.xhtml
41RelatividadGeneral.xhtml
42AgujerosNegros.xhtml
43LaParadojaDeOlbers.xhtml
44LaLeyDeHubble.xhtml
45ElBigBang.xhtml
46LaInflacionCosmica.xhtml
47LaMateriaOscura.xhtml
48LaConstanteCosmologica.xhtml
49LaParadojaDeFermi.xhtml
50ElPrincipioAntropico.xhtml
Glosario.xhtml
autor.xhtml