17 Ley de Bragg

Si está sentado en una habitación iluminada, ponga la mano cerca de la pared y observará tras ella una silueta bien definida. Separe la mano un poco más de la pared y el contorno de la sombra se irá haciendo borroso. Esto es debido a la difracción de la luz alrededor de su mano. Los rayos de luz se difunden hacia dentro alrededor de sus dedos cuando pasan, difuminando su contorno. Todas las ondas se comportan así. Las ondas marinas se difractan alrededor de los bordes de los muros del puerto y las ondas sonoras se curvan hacia fuera más allá del borde del escenario en un concierto.

La difracción se puede describir utilizando el principio de Huygens, que permite predecir el paso de una onda teniendo en cuenta que cada punto de un frente de onda es una fuente de nuevas energías de ondas. Cada punto produce una onda circular y estas ondas se suman para describir cómo avanza la onda hacia delante. Si el frente de onda es limitado, las ondas circulares de los extremos finales se difundirán sin obstáculos. Esto sucede cuando una serie de ondas paralelas sortean un obstáculo, como su mano, o pasan por una abertura, como la entrada del puerto o el umbral de una puerta.

Cristalografía de los rayos X El físico australiano William Lawrence Bragg descubrió que la difracción siempre se produce en las ondas que viajan a través de un cristal. Un cristal está compuesto por numerosos átomos que forman una estructura parecida a una rejilla con filas y columnas regulares. Cuando Bragg proyectó rayos X a través de un cristal en una pantalla, los rayos dispersaron las filas de átomos. Los rayos salientes se amontonaban más en unas direcciones que en otras, formando gradualmente patrones de puntos. Dependiendo del tipo de cristal utilizado aparecían patrones de puntos diferentes.

WILLIAM LAWRENCE BRAGG (1890-1971)

William Lawrence Bragg nació en Adelaida, donde su padre William Henry era profesor de matemáticas y física. El joven Bragg se convirtió en el primer australiano al que miraron por rayos X cuando se cayó de la bicicleta y se rompió el brazo. Estudió ciencias físicas y después de graduarse siguió a su padre hasta Inglaterra. En Cambridge, Bragg descubrió su ley sobre la difracción de los rayos X por medio de cristales. Discutió sus ideas con su padre, pero le preocupaba que muchos pensaran que el descubrimiento había sido de su padre y no suyo. Durante la primera y la segunda guerra mundial, Bragg se unió al ejército y trabajó en el sónar. Después, regresó a Cambridge donde había fundado varios pequeños grupos de investigación. En su trayectoria posterior, Bragg se convirtió en un eficaz comunicador científico, iniciando una serie de conferencias para escolares en la Royal Institution de Londres y realizó apariciones regulares en televisión.

Los rayos X, descubiertos por el físico alemán Wilhelm Röntgen en 1895, eran necesarios para observar este efecto porque su longitud de onda es diminuta, un millar de veces menor que la longitud de onda de la luz visible y más pequeña que los átomos espaciados en el cristal. Por lo tanto, la longitud de onda de los rayos X es lo bastante pequeña para que lo atraviesen y para ser fuertemente difractados por las capas del cristal.

«Lo importante de la ciencia no es tanto obtener nuevos hechos como descubrir nuevos modos de pensar sobre ellos.»

Sir William Bragg, 1968

Los puntos más brillantes de los rayos X se generan cuando al atravesar el cristal los rayos siguen trayectorias que producen señales que están «en fase». En las ondas en fase, donde las crestas y los valles están alineados, se unen para reforzar su brillo y producir puntos. Cuando están desfasadas, con las crestas y los valles desalineados, se anulan y no se produce ninguna luz. Así que usted ve un patrón de puntos brillantes cuyo espaciado le indicará la distancia entre las filas de los átomos del cristal. Este efecto de refuerzo y anulación de las ondas se denomina «interferencia».

Bragg expresó esto matemáticamente considerando dos ondas, una que se reflejaba en la superficie del cristal y la otra que penetraba una única capa de átomos del cristal. Para que la segunda onda estuviera en fase y reforzara a la primera tenía que viajar una distancia adicional equivalente a un número entero con una longitud de onda mayor que la de la primera onda. Esta distancia adicional depende del ángulo con el cual incida el rayo y de la separación entre las capas de átomos. La ley de Bragg establece que la interferencia observada y el espacio del cristal están relacionados para una longitud de onda determinada.

Estructura profunda La cristalografía de los rayos X es de gran utilidad para determinar la estructura de los nuevos materiales, y para los químicos y biólogos que investigan la arquitectura de las moléculas. En 1953 se utilizó para identificar la estructura de doble hélice del ADN; Francis Crick y James Watson extrajeron su archiconocida idea de los patrones de interferencia de los rayos X de Rosalind Franklin para el ADN y se dieron cuenta de que las moléculas que los producían tienen que estar dispuestas en forma de doble hélice.

La doble hélice del ADN

En los años cincuenta, los investigadores estaban desconcertados ante la estructura del ADN, uno de los bloques constituyentes de la vida. Los físicos británicos James Watson y Francis Crick publicaron su estructura de la doble hélice en 1953, lo cual fue un decisivo paso adelante. Reconocieron haberse inspirado en los investigadores del King’s College de Londres, Maurice Wilkins y Rosalind Franklin, que habían tomado fotografías cristalográficas del ADN con rayos X utilizando la ley de Bragg. Franklin realizó exquisitas fotografías que mostraban la variedad de interferencias de puntos brillantes que revelaban en último término la estructura del ADN. Crick, Watson y Wilkins recibieron el Premio Nobel por su trabajo, pero Franklin no pudo asistir a causa de su prematura muerte. Algunos también piensan que se quitó importancia a su papel en el descubrimiento debido a las actitudes sexistas de aquella época. Quizá también los resultados de Franklin trascendieron a Watson y Crick sin el consentimiento de ella. Desde entonces, se reconoce su contribución.

WILHELM RÖNTGEN (1845-1923)

Wilhelm Röntgen nació en el Bajo Rin, en Alemania, aunque se trasladó a Holanda siendo aún niño. Estudió física en Utrecht y Zurich, y trabajó en numerosas universidades antes de desempeñar sus principales tareas docentes en las universidades de Wurzburgo y Munich. El trabajo de Röntgen se centró en el calor y el electromagnetismo, pero se le conoce sobre todo por su descubrimiento de los rayos X en 1895. Al hacer pasar electricidad a través de un gas a baja presión, observó que una pantalla recubierta de una sustancia química emitía una fluorescencia incluso cuando realizaba el experimento a oscuras. Estos nuevos rayos atravesaban diferentes materiales, incluyendo los tejidos de la mano de su esposa, colocada frente a una placa fotográfica. Los denominó rayos X porque su origen era desconocido. Más adelante se comprobó que se trataba de ondas electromagnéticas similares a la luz, salvo por su más elevada frecuencia.

La ley de Bragg se expresa matemáticamente como

2 d sin θ = n λ

donde d es la distancia entre la capa de átomos, θ es el ángulo de incidencia de la luz, n es un número entero y λ es la longitud de onda de la luz.

Por primera vez el descubrimiento de los rayos X y las técnicas cristalográficas proporcionaron a los físicos herramientas para analizar la estructura profunda de la materia e incluso del cuerpo. Muchas técnicas utilizadas actualmente para la toma de imágenes médicas se basan en conceptos físicos similares. La tomografía axial computarizada reúne muchas secciones de rayos X del cuerpo para ofrecer una visión interna real; los mapas de ultrasonidos de alta frecuencia obtienen ecos de los órganos corporales; la imagen por resonancia magnética (MRI) escanea el agua a través de los tejidos corporales para identificar vibraciones moleculares generadas por medio de potentes imanes; y la tomografía por emisión de positrones (PET) sigue los rastros radioactivos mientras circulan por el organismo. Así, tanto doctores como pacientes están agradecidos a los físicos como Bragg por desarrollar estas herramientas.

Cronología:

1895 d. C.: Röntgen descubre los rayos X.

1912 d. C.: Bragg descubre su ley sobre la difracción.

1953 d. C.: La difracción de los rayos X se utiliza para descubrir la estructura del ADN.

La idea en síntesis: estructura de puntos

50 cosas que hay que saber sobre física
cubierta.xhtml
sinopsis.xhtml
titulo.xhtml
info.xhtml
Introduccion.xhtml
MateriaEnMovimiento.xhtml
01PrincipioDeMach.xhtml
02LasLeyesDelMovimientoDeNewton.xhtml
03LasLeyesDeKepler.xhtml
04LaLeyDeLaGravedadDeNewton.xhtml
05LaConservacionDeLaEnergia.xhtml
06ElMovimientoArmonicoSimple.xhtml
07LaLeyDeHooke.xhtml
08LeyDeLosGasesIdeales.xhtml
09SegundaLeyDeLaTermodinamica.xhtml
10CeroAbsoluto.xhtml
11ElMovimientoBrowniano.xhtml
12TeoriaDelCaos.xhtml
13LaEcuacionDeBernoulli.xhtml
LasOndas.xhtml
14TeoriaDelColorDeNewton.xhtml
15PrincipioDeHuygens.xhtml
16LaLeyDeSnell.xhtml
17LeyDeBragg.xhtml
18LaDifraccionDeFraunhofer.xhtml
19ElEfectoDoppler.xhtml
20LaLeyDeOhm.xhtml
21LaReglaDeLaManoDerechaDeFleming.xhtml
22LasEcuacionesDeMaxwell.xhtml
EnigmasCuanticos.xhtml
23LaLeyDePlanck.xhtml
24ElEfectoFotoelectrico.xhtml
25LaEcuacionDeOndasDeSchrodinger.xhtml
26ElPrincipioDeIncertidumbreDeHeisenberg.xhtml
27LaInterpretacionDeCopenhague.xhtml
28ElGatoDeSchrodinger.xhtml
29LaParadojaEPR.xhtml
30ElPrincipioDeExclusionDePauli.xhtml
31Super-Conductividad.xhtml
LaDivisionDeLosAtomos.xhtml
32ElAtomoDeRutherford.xhtml
33Antimateria.xhtml
34FisionNuclear.xhtml
35FusionNuclear.xhtml
36ElModeloEstandar.xhtml
37DiagramasDeFeynman.xhtml
38LaParticulaDivina.xhtml
39TeoriaDeCuerdas.xhtml
EspacioYTiempo.xhtml
40RelatividadEspecial.xhtml
41RelatividadGeneral.xhtml
42AgujerosNegros.xhtml
43LaParadojaDeOlbers.xhtml
44LaLeyDeHubble.xhtml
45ElBigBang.xhtml
46LaInflacionCosmica.xhtml
47LaMateriaOscura.xhtml
48LaConstanteCosmologica.xhtml
49LaParadojaDeFermi.xhtml
50ElPrincipioAntropico.xhtml
Glosario.xhtml
autor.xhtml