1 · Rasgos distintivos entre ciencia y tecnociencia.

A lo largo de la historia se han propuesto numerosas definiciones de ciencia[1]. Otro tanto cabe decir en el caso de la tecnología, aunque la definición de Quintanilla que hemos comentado en el capítulo anterior es una de las más elaboradas. Por eso la tomamos como punto de partida. Se trata ahora de precisar los rasgos que distinguen a la tecnociencia de la ciencia y de la tecnología, partiendo de las consideraciones ya realizadas en el apartado 1.4, relativo a la macrociencia. Hay diferencias de tamaño y escala, pero también propondremos distinciones cualitativas. En su conjunto, las notas distintivas que vamos a proponer configuran un nuevo marco para la actividad científico-tecnológica, muy diferente al de la ciencia moderna o al de la tecnología industrial. En ello radica la singularidad de la tecnociencia, hacia cuyo discernimiento se encamina esta segunda aproximación conceptual. Lo importante es tener criterios para distinguir la tecnociencia, la ciencia y la tecnología, sin que ello implique una demarcación entre ellas, puesto que sus respectivas fronteras son difusas en algunos aspectos. Como la tecnociencia tiene una fuerte componente tecnológica, lo dicho en el capítulo anterior sobre la tecnología es aplicable a la tecnociencia. Se trata ahora de añadir otras notas distintivas.

La tecnociencia puede ser considerada como una fase evolutiva posterior a la emergencia de la Big Science, tras la crisis de la década 1966-76. Como ya dijimos en el prólogo, el crecimiento continuado de la macrociencia en los EEUU experimentó un parón a partir de 1965, fecha que marca la primera crisis de la macrociencia, y en particular de la macrociencia militarizada. Para entonces, esa nueva modalidad de investigación científica se había consolidado en los EEUU, la URSS, y comenzaba a instaurarse en algunos países europeos (CERN, European Spacial Agency, etc.). La promoción de la macrociencia en Europa y en la URSS también fue una iniciativa gubernamental, en mayor medida incluso que en los EEUU. Hubo diferencias importantes entre el sistema de ciencia y tecnología de los EEUU y, por ejemplo, el de la URSS, pero las seis características de la macrociencia que señalamos en el apartado 1.4 son válidas para Europa y la URSS, con la importante diferencia de que, en este último caso, las industrias eran exclusivamente estatales y estaban controladas por un partido político. A falta de estudios rigurosos sobre la estructura del sistema de ciencia y tecnología en la URSS, mantendremos la hipótesis de que en el bloque soviético hubo macrociencia, pero no se dio el paso a la tecnociencia, precisamente por carecer de un sistema empresarial y de una economía de mercado que permitiera abrir nuevas fuentes de financiación para la investigación tecnocientífica, aparte de las estatales.

Por tanto, los seis rasgos distintivos siguen teniendo validez, aunque con matices y diferencias importantes, que conviene subrayar. Pero también hay características nuevas.

En el apartado 2.2 pondremos el acento en estas últimas. En la exploración realizada en el apartado 1.4 habíamos encontrado notas diferenciales de muy distinto tipo: económicas, sociológicas, políticas, etc. Los indicadores que muchos autores utilizan para definir la macrociencia tienen indudable interés: tamaño, ritmo de crecimiento, porcentaje económico de las inversiones en macroproyectos, etc. Sin embargo, nuestro análisis parte de una perspectiva filosófica y se centra en la axiología. Conforme vayamos exponiendo esos rasgos distintivos haremos un breve análisis axiológico de los mismos, con el fin de mostrar los profundos cambios de valores que ha experimentado la ciencia en el siglo XX. En el capítulo 5 nos ocuparemos exclusivamente de la axiología de la tecnociencia.

a) La financiación privada de la investigación.

La macrociencia surgió en los Estados Unidos de América en la época de la segunda Guerra Mundial y el principal factor que suscitó su emergencia fue una nueva política del Gobierno Federal, más intervencionista en asuntos científicos. La iniciativa gubernamental, en particular la militar, fue el motor que impulsó los grandes proyectos de los años 40 y 50, sin perjuicio de que en los años 30 algunas instituciones hubieran sido pioneras de la macrociencia norteamericana. Desde el punto de vista de la financiación, esa política se mantuvo estable hasta la mitad de los años 60, llegando a su apogeo con la administración Kennedy[2]. A partir de ese momento, y coincidiendo con el fracaso en la guerra del Vietnam, se produjo un profundo movimiento de desconfianza hacia la ciencia por parte de la sociedad norteamericana, que tuvo reflejo directo en los presupuestos públicos que se le dedicaban y en numerosos movimientos estudiantiles y sociales contra las aplicaciones militares de la investigación científica[3]. La financiación militar de la investigación básica, por ejemplo, cayó radicalmente en el período 1965-1975[4]. Otro tanto ocurrió con la financiación privada, que cayó un 36% entre 1966 y 1972.

Las comunidades científicas vivieron esta caída como una auténtica crisis e incluso hablaron de un movimiento irracionalista y anticientífico[5]. Muchas Universidades cerraron sus centros de investigación vinculados a Defensa, o los reconvirtieron. La situación comenzó a cambiar con la Presidencia Ford, pero sobre todo con la Administración Reagan. En los años 80 se estableció un nuevo contrato social con la ciencia, que puede ser considerado como la base para la emergencia de la tecnociencia. Desde el punto de vista presupuestario, se produjo un rápido crecimiento de la financiación privada en I+D, gracias a una liberalización de la ley de patentes y a una nueva política fiscal, que permitía desgravar el 25% de las inversiones privadas en I+D. La prioridad política pasó a ser el desarrollo tecnológico y la presencia de la iniciativa privada como motor del mismo. El Gobierno no dejó de financiar la investigación básica, pero el objetivo principal de su política científica consistió en lograr que fueran las empresas las que fueran incrementando dicha financiación. Esa política acarreó un cambio radical del marco en el que se desarrollaba la investigación científica. A partir de los años 80 la financiación privada de I+D superó a la pública, y desde entonces ha seguido creciendo, hasta llegar al 70% del total de la inversión en I+D en los EEUU. Un proceso similar se produjo en Europa, aunque mucho más tardíamente.

Por tanto, diremos que la tecnociencia propiamente dicha emerge en los años 80 en EEUU, sin perjuicio de que haya precedentes anteriores de ella. Desde el punto de vista de la financiación, se caracteriza por la primacía del sector privado sobre el público. Dicho cambio trajo consigo otros muchas transformaciones concomitantes, que conviene analizar por separado. En términos generales, supuso una importante reestructuración del sistema norteamericano de ciencia y tecnología.

Por ejemplo, la Bolsa comenzó a interesarse por invertir en ciencia y tecnología. En 1983, empresas como Merrill Lynch y la Banca Morgan aconsejaron a sus clientes que invirtieran en empresas de I+D. Frente a la financiación de la macrociencia, mayoritariamente estatal y militar, la tecnociencia encontró nuevas vías de financiación, aparte de las grandes corporaciones y las agencias gubernamentales. Proliferaron pequeñas empresas de I+D, sobre todo en el ámbito de las nuevas tecnologías (TIC, biotecnologías). Muchas de ellas recurrieron a entidades financieras de capital-riesgo y a la Bolsa para poner en marcha sus programas de investigación, que no estaban orientados únicamente a la investigación básica y el desarrollo tecnológico, sino ante todo a la innovación. A partir de los años 80, el tamaño de las empresas de I+D, que habían pasado a ser de I+D+i, dejó de ser lo fundamental. Lo importante era su capacidad de innovación y penetración en el mercado de las nuevas tecnologías. Pocos años después, todo ello confluyó en la aparición de un nuevo índice bursátil, el NASDAQ, donde las empresas tecnocientíficas encontraron una nueva fuente de financiación y de capitalización bursátil. La mayoría de esas pequeñas empresas de I+D+i perecieron o fueron absorbidas por las grandes corporaciones, pero algunas de ellas sobrevivieron y pasaron a ser grandes empresas en el sector económico tecnocientífico. Siguió habiendo macroproyectos científicos financiados por el Gobierno, por lo que la macrociencia siguió existiendo. Pero, aparte de ella, surgió una nueva modalidad de ciencia, cuyas investigaciones tenían como objetivo prioritario la innovación tecnológica. El tamaño de los proyectos, de los equipos y de los instrumentos no era relevante en el caso de las empresas tecnocientíficas. Es una de las razones por las que distinguimos entre macrociencia y tecnociencia. Algunas pequeñas empresas (Apple, Microsoft, Intel, etc.) mostraron mucha mayor capacidad innovadora que las grandes corporaciones industriales de la postguerra. Sus tasas de crecimiento fueron altísimas, aunque muchas de ellas se mostraron efímeras. La tecnociencia se convirtió en un sector donde se podían hacer negocios buenos y rápidos si se lograban innovaciones tecnológicas. Por ello la Bolsa y los inversores privados se sintieron atraídos por el nuevo sector, dejando los macroproyectos para las Agencias estatales. En conjunto, esta nueva política científico-financiera consiguió que los porcentajes de financiación pública y privada de la investigación se invirtieran. La primacía de la inversión privada se ha convertido desde entonces en una componente estructural del sistemas SCyT norteamericano, que otros muchos países tratan de imitar. La macrociencia y la tecnociencia se distinguen claramente por su estructura financiera.

Desde una perspectiva axiológica, cabe decir que con la llegada de la tecnociencia los valores más característicos del capitalismo entraron en el núcleo mismo de la actividad científico-tecnológica. El enriquecimiento rápido, por ejemplo, que tradicionalmente había sido ajeno a las comunidades científicas, pasó a formar parte de los objetivos de las empresas tecnocientíficas. La capitalización en Bolsa y la confianza de los inversores se convirtieron en valores dominantes para muchas empresas tecnocientíficas. Aunque los valores clásicos de la ciencia mantuvieron su presencia a la hora de investigar, las empresas de I+D+i no tenían como objetivo la generación de conocimiento, sino la innovación tecnológica y su capitalización en el mercado. El peso relativo de los valores técnicos, económicos y empresariales aumentó considerablemente, mientras menguaban los valores políticos de la época de la segunda guerra mundial. Por otra parte, muchas empresas tecnocientíficas se convirtieron en multinacionales, desbordando el mercado norteamericano, por lo que comenzaron a ser más sensibles a los valores culturales, ecológicos y sociales, cuya adecuada satisfacción era necesaria para lograr mayores cotas de penetración en los mercados internacionales. Asimismo adquirieron gran peso los valores jurídicos, en la medida en que había que asegurar la propiedad del conocimiento, la gestión de patentes y las licencias de uso de los artefactos tecnológicos.

b) Mediación mutua entre ciencia y tecnología.

Las relaciones entre ciencia y tecnología proceden de la sociedad industrial y se vieron considerablemente reforzadas con la emergencia de la macrociencia. En el caso de la tecnociencia, la interdependencia entre ciencia y tecnología es prácticamente total. Si los tecnocientíficos pretenden producir nuevo conocimiento y emprenden acciones científicas para ello (demostrar, calcular, observar, medir, experimentar, etc.), dichas acciones son literalmente inviables sin apoyo tecnológico. Recíprocamente, las destrezas técnicas y las innovaciones tecnológicas han de estar estrictamente basadas en conocimiento científico, no solo vinculadas a él, porque así se incrementa la eficiencia económica de las acciones tecnológicas. El propio diseño de los experimentos y de los proyectos de investigación científica es tecnológico, puesto que hay que enunciar previamente unos objetivos, precisar una metodología y un plan de trabajo y prever los resultados que piensan obtenerse, valorando su posible importancia y utilidad, así como las expectativas de generar innovación. Recíprocamente, las diversas acciones tecnológicas han de tener una base científica. La ciencia es requisito de la tecnología y la tecnología de la ciencia. Esta hibridación forma parte constitutiva de la tecnociencia, a diferencia de la ciencia y la tecnología industriales, donde era adventicia. Con la tecnociencia se produce una mixtura o fusión, porque ambas actividades se benefician la una a la otra. El mayor o menor grado de integración entre la actividad científica y la tecnológica es uno de los indicadores de la existencia de tecnociencia, aunque, a efectos prácticos, basta con dilucidar si cada una de ellas es indispensable para la otra. La simbiosis entre ciencia y tecnología ya se había producido en la época de la macrociencia, pero a partir de los años 80 volvió a reforzarse, posiblemente con mayor protagonismo para los tecnólogos.

Este rasgo distintivo puede ser analizado desde múltiples perspectivas (institucionales, sociológicas, económicas…), pero aquí nos ocuparemos ante todo de su interpretación axiológica. Por ser tecnología, la tecnociencia no solo busca conocimiento verdadero (o verosímil, o contrastable, o falsable), sino también conocimiento útil[6]. Pero, por ser ciencia, tampoco basta con que las acciones tecnocientíficas sean útiles o eficaces, sino que además se requiere que estén científicamente justificadas. De ahí que la tecnociencia, pese a tener una orientación práctica muy acusada, siempre se interesa por la teoría, incluida la teoría de los artefactos que aplica[7]. La verdad, la verosimilitud, la generalidad, la adecuación empírica, la precisión y la coherencia siguen siendo valores relevantes para la tecnociencia, pero los valores epistémicos no son los únicos. La tecnociencia incorpora a su núcleo axiológico buena parte de los valores técnicos (utilidad, eficiencia, eficacia, funcionalidad, aplicabilidad, etc.) y aunque sigue manteniendo los valores epistémicos, el segundo subsistema de valores tiene un peso tan considerable como el primero. La tecnociencia y la ciencia se distinguen entre sí por el mayor o menor peso relativo de esos dos subsistemas de valores, sin perjuicio de que ambas incorporen valores epistémicos y técnicos a su núcleo axiológico. Esta primera distinción es cuestión de grado, pero también de sistemas de valores preponderantes. En la ciencia predominan los epistémicos, en la tecnociencia los técnicos.

c) Empresas tecnocientíficas.

La vinculación entre ciencia, tecnología y empresa se intensificó radicalmente con la emergencia de la tecnociencia, hasta el punto que la producción de conocimiento científico y tecnológico se convierte en un nuevo sector económico, popularmente denominado de nuevas tecnologías. No solo cabe hablar de industrias tecnocientíficas, como ocurría en el caso de la macrociencia, sino de un nuevo sector mercado en el que compiten diversos tipos de empresas (públicas y privadas, industriales e informacionales, grandes o pequeñas). Paralelamente, los laboratorios y equipos de investigación pugnan entre sí por la obtención de proyectos públicos y contratos con empresas, buscando nichos en el mercado financiero de la tecnociencia. La obtención, gestión y rentabilización de las patentes que resulten de la investigación en I+D+i se convierte en una componente básica de la actividad tecnocientífica, tan importante como la investigación misma. Además, surgen nuevas modalidades de explotación y rentabilización de la propiedad del conocimiento: licencias de uso, franquicias, suscripciones de acceso y conexión, etc. Buena parte del patrimonio de dichas empresas consiste en el conocimiento que tienen en propiedad, o que son capaces de producir, gestionar y comercializar. Se comienza a hablar de capital intelectual, con lo que se sobreentiende que las inversiones en ese tipo de capital han de ser rentabilizadas. Por otra parte, ya no basta con producir conocimiento, sino que es preciso saberlo, tanto a la hora de proponer proyectos de investigación que resulten prometedores como en el momento de presentar los resultados. La gestión y el marketing del conocimiento forma parte de las actividades de una empresa tecnocientífica. Trátese de empresas públicas, privadas o mixtas, se introducen modelos empresariales de organización del trabajo y de gestión de la tecnociencia, a diferencia de las comunidades académicas clásicas, las cuales quedan ancladas en un modo de producción del conocimiento que resulta anticuado. Como puede comprobarse, el cambio es radical.

Consecuencia adicional: los resultados tecnocientíficos se convierten en mercancía y, en lugar de comunicarse libre y públicamente en las revistas especializadas, devienen propiedad privada desde las primeras fases de la investigación. La mayor ponderación de los valores económicos en el núcleo axiológico de la actividad científica genera un cambio sistémico en los valores de la tecnociencia. En la fase de emergencia de la macrociencia, esto produjo numerosos conflictos, puesto que «en lugar de explorar nuevos fenómenos, los físicos se encontraban a sí mismos gastando cada vez más tiempo en investigar las vías para lograr ideas patentables, por razones económicas, más que científicas»[8]. En cambio, a partir de los años 80 esos valores están interiorizados por los propios científicos e ingenieros, algunos de los cuales se convierten en accionistas de las empresas donde trabajan. A las empresas de I+D+i puede interesarles que haya descubrimientos científicos y que estos sean publicables en su momento, porque ello redunda a favor del prestigio de la empresa; pero mucho más les interesa que del desarrollo de los proyectos de investigación surjan patentes y contratos de leasing, de modo que el conocimiento resulte económicamente rentable. La llegada de la inversión privada a la tecnociencia trajo consigo el imperativo de rentabilidad del concimiento. En la mayoría de los casos, la «patentabilidad» prima sobre la «publicabilidad», invirtiéndose uno de los valores clásicos de la ciencia moderna. El logro potencial de patentes es un criterio de evaluación en el diseño mismo de los proyectos tecnocientíficos, así como su capacidad de innovación, es decir de transferencia de los resultados a las empresas que actúan en el mercado. La tecnociencia no solo evalúa los impactos epistémicos (publicaciones, citas, etc.), sino ante todo la incidencia económica de las innovaciones resultantes, así como la capacidad de obtener financiación para el desarrollo de los proyectos. La cultura tecnocientífica tiene una fuerte componente empresarial, cosa que no ocurría con la ciencia moderna, salvo excepciones.

Comprobamos de nuevo que se produce un profundo cambio de valores entre la tecnociencia y la ciencia. Las comunidades tecnológicas habían interiorizado en mayor grado los principios y valores empresariales durante la época industrial. En la etapa de la macrociencia, los científicos colaboraban en los grandes proyectos militares por razones epistémicas (resolver problemas científicos), peor también por motivos políticos (patriotismo, defensa de la democracia, etc.). Ahora, en cambio, los propios científicos han hecho suyos los valores empresariales, sin perder por ello sus valores epistémicos específicos. También en este caso hay considerables diferencias de grado, puesto que algunas empresas tecnocientíficas tienden a convertirse en grandes holdings, que cotizan en Bolsa o se integran en grupos financieros. El marketing de la tecnociencia se convierte en práctica habitual, cuyo diseño corresponde a expertos en mercadotecnia, aunque también surgen científicos e ingenieros que destacan por sus capacidades para «vender» o difundir el producto, más que por sus habilidades en el laboratorio o con los aparatos. Este proceso se presenta ante todo en el sector privado, pero también en la ciencia con financiación pública. Los vínculos cada vez más estrechos entre las universidades y las empresas son un buen indicador del mismo.

En resumen, los valores económicos y empresariales impregnan la actividad tecnocientífica y se integran en el núcleo axiológico de la investigación, la enseñanza y la aplicación de la tecnociencia, adquiriendo un peso relativo considerable. Es importante subrayar este hecho, porque de ello se infiere que la axiología de la tecnociencia siempre ha de tener en cuenta, como mínimo, tres sistemas de valores: epistémicos, técnicos y económicos. La terminología actual para hablar de ellos es: investigación, desarrollo e innovación, aludiéndose en este último caso a las componentes empresariales de la actividad tecnocientífica. La tecnociencia siempre está guiada por valores económicos, cosa que solo ocurría ocasionalmente en el caso de la ciencia. Los valores económicos son una de las tres componentes axiológicas que guían las acciones tecnocientíficas y sus evaluaciones ex ante y ex post. Por tanto, el pluralismo axiológico es «connatural» a la tecnociencia. Algunas ciencias clásicas pudieron estar guiadas por valores exclusivamente epistémicos, o predominantemente epistémicos. Ello no ocurre en el caso de la tecnociencia y por ello tenemos un nuevo criterio axiológico para distinguirlas: la existencia de un subsistema de valores económicos junto a los subsistemas de valores epistémicos y técnicos antes señalados.

d) Redes de investigación.

Si atendemos al principal escenario de la ciencia moderna, el laboratorio, la tecnociencia aporta cambios significativos. Vimos que, en el caso de la macrociencia, los laboratorios se convertían en factorías de producción de conocimiento. Con el salto ulterior a la tecnociencia, adoptan la forma de laboratorios-red, interconectados gracias a las tecnologías de la información. Frente al laboratorio aislado de la ciencia moderna, surgen los laboratorios coordinados, que colaboran en un mismo proyecto y se dividen las tareas a llevar a cabo. Otro tanto ocurre con los proyectos de investigación, en los que suelen colaborar diferentes equipos investigadores, empresas y países. En conjunto, el atomismo institucional que caracterizó a la ciencia moderna se ha visto reemplazado por una tecnociencia en red, con todas las consecuencias que ello tiene para la organización de la actividad científica y para la práctica investigadora.

La red Arpanet, que conectó diversas universidades y agencias norteamericanas en los años 80, puede ser considerada como un primer paradigma de la investigación en red, al igual que la World Wide Web, ideada por Berners-Lee para facilitar la comunicación entre los investigadores del CERN europeo. Al laboratorio formado por el recinto físico donde coincidían presencialmente los investigadores, los aparatos y los objetos investigados se le superpuso un laboratorio-red. Los nuevos programas de investigación espacial y militar de los EEUU, completamente mediatizados por las redes telemáticas, constituyen otros dos grandes ejemplos de esta profunda transformación topológica del principal escenario donde se elaboró la ciencia moderna, el laboratorio. El acceso remoto a grandes ordenadores y equipamientos, el intercambio de datos, borradores e hipótesis a través de las redes telemáticas y la investigación en red fueron convirtiéndose a partir de los años 80 en una práctica científica habitual, sin perjuicio de que las observaciones y experimentos tradicionales siguieran desarrollándose. Los objetos investigados eran representaciones informáticas, los datos empíricos devinieron tecnodatos y los equipos de investigación y contrastación estaban dispersos geográficamente, pero conectados por vía tecnológica[9].

La denominación de tecnociencia se justifica bien en base a este transformación de los laboratorios en laboratorios-red. En efecto, las acciones científicas más elementales (obtención y consulta de datos, realización de cálculos, contrastación de hipótesis, intercambio de ideas y resultados provisionales, etc.) comenzaron a estar mediatizadas por las nuevas tecnologías de la información y la comunicación (TIC). Los científicos dejaron de tener presentes los datos en sus mesas de despacho o en los visores de sus instrumentos. Para acceder a los datos empíricos y para obtener nuevos datos es indispensable el uso de las TIC. La tecnociencia se caracteriza por la necesidad de recurrir a las TIC para poder desarrollar las acciones científicas más rutinarias. El laboratorio deviene un tele-laboratorio.

Otro tanto cabe decir de las publicaciones científicas, que han ido adoptando un formato electrónico. La comunicación pública de los resultados de las investigaciones comenzó a producirse en un escenario tecnológico: a distancia y en red. La contrastación y verificación de los datos, observaciones, mediciones, experimentos e hipótesis, que antes se realizaba mediante congresos, visitas personales y prepublicaciones, se lleva ahora a cabo en Internet. Las relaciones informales entre los científicos, tan importantes a la hora de consolidar las corrientes dominantes en las comunidades científicas, se desarrollan por la vía del correo electrónico. Un historiador de la tecnociencia del siglo XX tiene que recurrir a fuentes documentales muy diferentes a los tradicionales protocolos de laboratorio para hacer el seguimiento de los procesos que conducen a un descubrimiento o innovación tecnocientífica.

Desde un punto de vista axiológico, ello implica un reforzamiento de los valores tecnológicos en el núcleo mismo de la actividad científica: el laboratorio, la comunicación entre científicos y la publicación. El buen funcionamiento de las redes telemáticas es indispensable para los laboratorios-red. Se requiere rapidez, fiabilidad, robustez, compatibilidad, integrabilidad, eficiencia, buen funcionamiento, etc. No en vano ha surgido Internet2 en los EEUU cuando el uso de la red Internet se ha generalizado en la sociedad civil, creando problemas de funcionamiento en las redes telemáticas que usan los científicos. La generación, contrastación y perfeccionamiento del conocimiento científico depende estrictamente del buen funcionamiento de las tecnologías de telecomunicaciones, y ello no solo en relación a los aparatos del laboratorio, sino también a los restantes artefactos que permiten el acceso a los datos, su representación, su transmisión y la comunicación y publicación científica. Un laboratorio que no esté conectado a redes de banda ancha, simplemente no es un laboratorio tecnocientífico.

e) Tecnociencia militar.

A partir de la primera guerra mundial, y sobre todo de la segunda, los científicos se han involucrado en empresas militares de una envergadura hasta entonces desconocida en la historia de la humanidad. La guerra química de 1915 fue el primer gran ejemplo[10], pero el proyecto Manhattan ilustra mejor lo que hemos denominado megaciencia militarizada. Las explosiones de las bombas atómicas de Hiroshima y Nagasaki dieron lugar a una auténtica crisis de conciencia en la comunidad científica, así como en la sociedad. Dicha crisis de valores se agudizó ulteriormente, debido a que el desarrollo de la energía nuclear generó enormes amenazas para todo el planeta (efecto invernadero, residuos, riesgos en las centrales nucleares, etc.). En las décadas siguientes surgieron modalidades de auténtica megaciencia militarizada, como la red militar SAGE, puesta en funcionamiento por los EEUU en los años 50. Su principal núcleo era una red de ordenadores que controlaba numerosos aparatos de radar, organizando la respuesta y dirigiendo a los cazas en caso de un ataque nuclear procedente de la Unión Soviética. La red SAGE inauguró la saga de las redes tecnocientíficas militares, cuyo máximo exponente fue la Iniciativa de Defensa Estratégica del Presidente Reagan, decisiva para la consolidación de la tecnociencia. Esta línea de investigación condujo a una nueva modalidad de guerra, la ciberguerra, que ha sido puesta en práctica a gran escala en las Guerras del Golfo Pérsico, Kosovo y Afganistán. Como hemos afirmado en otro lugar, la ciberguerra implica una radical transformación del concepto de guerra[11], aunque aquí no vayamos a extendernos al respecto.

A partir de los años 80 la colaboración entre los científicos y militares volvió a ser considerada como prioritaria en los EEUU, dándose por superada la crisis de la década 1966-76. Tras la guerra de Vietnam, el Pentágono comenzó a afirmar que los EEUU estaban perdiendo su supremacía tecnológica en relación a la URSS y que era preciso retomar la colaboración entre científicos, ingenieros y militares, que había menguado considerablemente. Por tanto, el nuevo objetivo consistía en desarrollar tecnología militar, particularmente en el ámbito de las TIC, los misiles teledirigidos, la microelectrónica, los láser, la inteligencia artificial, la robótica, los nuevos materiales y los nuevos sistemas de propulsión para armas y barcos[12]. Como resultado, las administraciones Ford y Carter comenzaron a aprobar nuevos fondos para potenciar la investigación básica aplicada a cuestiones de Defensa. Mas también en este caso fue la administración Reagan la que tomó las medidas más decididas: en 1986, los fondos que las Universidades podían recibir de agencias militares se incrementaron en un 16,5%. La novedad consistió en que ya no se trataba de macroproyectos de investigación. Aunque siguió habiéndolos, buena parte de los fondos se utilizaron para financiar pequeños proyectos, siempre que estos ofrecieran expectativas de innovación en tecnologías militares. El sector privado, por su parte, también apoyó esta iniciativa, invirtiendo en Universidades que tuvieran contratos con agencias militares. El sector de la electrónica, por ejemplo, creció un 200% en quince años. Se inauguraba así la época de la tecnoguerra, basada en las TIC, a diferencia de la guerra con apoyo en las industrias pesadas. Por tanto, a partir de los años 80 y en relación con la tecnociencia militarizada cabe afirmar que:

e.1) La investigación tecnocientífica, sea de gran o de pequeño tamaño, adquirió una relevancia estratégica para los poderes militares. Como resultado de la prioridad otorgada a las tecnologías militares, hoy en día cabe hablar de una nueva modalidad de guerra, la infoguerra o ciberguerra, basada en las tecnociencias, más que en la ciencia industrializada de principios del siglo XX. Latour llega a afirmar que «la tecnociencia es parte de una máquina bélica, y debe ser estudiada como tal»[13]. Esto puede ser cierto en el caso de algunas tecnociencias, no de todas. Sobre todo, es falso cuando el término «tecnociencia» se usa omnicomprensivamente, como hace Latour, quien asume que ciencia, tecnología y tecnociencia son lo mismo, contrariamente a lo que aquí propugnamos. En cambio, Latour sí tiene razón al afirmar que «hoy en día, ningún ejército es capaz de vencer sin los científicos»[14]. Buena parte de la tecnociencia tiene una gran importancia estratégica para los poderes militares y por ello se pueden mencionar innumerables proyectos tecnocientíficos que han sido impulsados, financiados y desarrollados por las fuerzas armadas de los EEUU. Dicho de otra manera, además de los vínculos entre científicos, tecnólogos y empresarios, la tecnociencia está basada en el establecimiento de relaciones muy estrechas con el poder militar. Esto ya ocurrió en la etapa de la megaciencia, pero se reforzó a partir de la década de los 80. Los Departamentos de Defensa de los países avanzados han creado sus propios Centros de investigación científico-tecnológica, cuyas innovaciones son imprescindibles para el desarrollo de nuevas armas de defensa y ataque, así como para las telecomunicaciones militares. Las tecnociencias militares forman parte de la estructura básica de la actividad militar actual, incluida la labor de información y propaganda, que se desarrolla a través de las televisiones y medios de comunicación.

e.2) Cabe hablar, por tanto, de una militarización parcial de la tecnociencia, que tiene múltiples consecuencias en la actividad científica, así como en sus resultados. Parte del conocimiento científico y las innovaciones tecnológicas devienen confidenciales y secretas, rompiéndose uno de los valores básicos de la ciencia moderna: la publicidad del conocimiento. Ni siquiera son inscritas en los registros de patentes. Ello no implica que todo se vuelve secreto. La ciencia y la tecnología públicas siguen existiendo. Lo que ocurre es que, junto a ellas, surgen conocimientos e innovaciones tecnocientíficas que solo se transfieren a la sociedad civil cuando han sido descatalogadas como confidenciales, por haber sido superadas por otras innovaciones o por devenir obsoletas. Asimismo hay muchos proyectos tecnocientíficos que jamás dejan de ser secretos, porque los documentos relativos a ellos son destruidos. Utilizando una metáfora militar, diremos que la vanguardia de la tecnociencia suele ser militar, haciéndose público únicamente el conocimiento de retaguardia. La sociedad civil sabe muy poco de lo que ocurre en la vanguardia tecnocientífica. Algunos proyectos nunca llegan a ser conocidos, porque los valores militares implican una voluntad de que no se sepa todo lo que se proyecta o se hace, contrariamente al ethos científico del que habló Merton[15].

e.3) Las consecuencias sociológicas de lo anterior son considerables, puesto que una parte considerable de los tecnocientíficos están al servicio de los ejércitos, directa o indirectamente[16]. Ello conlleva nuevos cambios en la actividad tecnocientífica, en la medida en que la discusión libre y crítica de las hipótesis y de las opciones tomadas se ve radicalmente yugulada. Defender el racionalismo crítico de Popper en el contexto de la tecnociencia militarizada parece pura y simplemente un sarcasmo epistemológico.

e.4) Aunque no vayamos a insistir mucho en ello, conviene subrayar que el conocimiento y las habilidades tecnocientíficas no solo son creativas, sino también destructivas. La tecnociencia destructiva es una parte indispensable de la nueva actividad científica, por lo que difícilmente cabe seguir afirmando que el conocimiento es un bien en sí, como muchos científicos acostumbran decir. Cabe argüir que los artefactos destructivos se construyen para defenderse, o para disuadir, como el propio Popper afirmó en relación con las bombas atómicas[17]. Pero incluso si aceptamos esa argumentación, podemos concluir que la búsqueda de conocimiento científico deviene un instrumento para otros fines, no un fin en sí. Los fines de la tecnociencia no son los de la ciencia. Como ya hemos afirmado más de una vez, esta subordinación de la búsqueda del conocimiento a otros objetivos (militares, empresariales, etc.) es una de las principales diferencias entre la tecnociencia y la ciencia, al menos tal y como esta ha sido teorizada por los filósofos que conciben la racionalidad científica en función de los objetivos de la ciencia. Si se mantiene esa teoría de la racionalidad, la racionalidad tecnocientífica difiere radicalmente de la racionalidad científica, puesto que han cambiado los objetivos de la tecnociencia. La alternativa consiste en propugnar la racionalidad valorativa o axiológica, como veremos en el capítulo 5.

Estos cambios, y otros que podrían mencionarse en relación con los vínculos entre las tecnociencias y el poder militar, incluidos los servicios secretos, tienen un trasunto axiológico claro. En épocas de guerra se producen profundos cambios en los valores que guían la actividad científica, sin perjuicio de que haya científicos (la minoría) que se aparten de esa main stream e intenten mantener los valores puramente epistémicos de la ciencia. Algunos de los valores militares (disciplina, obediencia debida, patriotismo o secreto) entran en el núcleo axiológico que guía las acciones científicas, no sin conflictos ni controversias, que por lo general quedan silenciadas. Esta es una de las razones para afirmar que la estructura de la actividad científica y tecnológica cambia radicalmente en virtud de esa estrecha vinculación entre tecnociencia y guerra. Si antes dijimos que el sistema de valores de la tecnociencia tiene, como mínimo, tres subsistemas (epistémicos, técnicos y económicos), ahora podemos añadir un cuarto subsistema, el de los valores militares, puesto que estos se insertan establemente en la práctica científica. Podemos concluir que buena parte de las acciones tecnocientíficas están guiadas en parte por valores militares, y ello en el núcleo mismo de las mismas, es decir en las instituciones y empresas de investigación, en la medida en que forman parte del aparato militar, aunque no sean contabilizados en las Fuerzas Armadas.

f) El nuevo contrato social de la tecnociencia.

Aunque también en este caso podrían señalarse numerosos precedentes históricos, cabe afirmar que la noción de una política científica para tiempos de paz surgió en los EEUU durante la segunda Guerra Mundial. Desde entonces se ha desarrollado y difundido por los países más desarrollados. Apareció así un nuevo tipo de acción tecnocientífica: el diseño, discusión, aprobación, publicación y puesta en funcionamiento de Planes de Ciencia y Tecnología, con la subsiguiente creación de Agencias específicas para ello. Dichos planes son propuestos por los Gobiernos, y en su caso debatidos y aprobados por los Parlamentos. Se trata de acciones políticas en el pleno sentido de la palabra. Normalmente son consideradas asuntos de Estado, en torno a los cuales se busca un consenso amplio entre diversos agentes sociales y políticos. Mediante esas acciones también se transforma el mundo, pero no el mundo natural, sino un sector del sistema social, a saber: los sistemas científico-tecnológicos SCyT de cada país. La política de ciencia y tecnología (PCyT, para abreviar) promueve, desarrolla y transforma el contexto en el que los científicos van a investigar y los tecnólogos a innovar. Dicho contexto será determinante para decidir qué investigaciones son procedentes (o prioritarias) y cuáles no. Las acciones de dotación de infraestructuras y grandes equipos proporcionan a algunos equipos y centros de investigación los aparatos imprescindibles para desarrollar sus actividades. Las convocatorias de becas de investigación y de puestos de trabajo para proyectos específicos en universidades, centros de investigación y empresas de I+D generan recursos humanos, sin los cuales las acciones tecnocientíficas concretas tampoco serían posibles. Las convocatorias de programas y proyectos de investigación, así como las acciones específicas y las grandes acciones transversales, permiten la ejecución de los proyectos tecnocientíficos al dotar a los equipos de financiación y medios (material fungible, contrataciones temporales, instrumental nuevo, etc.). Las agencias de evaluación instituyen procedimientos y criterios para esas asignaciones de recursos y permiten asimismo el seguimiento y la evaluación ex post de los resultados. Hay otras muchas acciones de política científica y tecnológica aparte de estas cuatro: por ejemplo la creación de nuevos agentes tecnocientíficos (institutos de investigación, universidades, parques tecnológicos, redes de excelencia, etc.), o la definición de las líneas prioritarias de investigación y desarrollo, con las múltiples consecuencias que de ello se derivan para las comunidades científicas. No pretendemos aquí ocuparnos a fondo de la enorme complejidad de los sistemas nacionales de política científica-tecnológica. Por ahora, nos limitamos a señalar que la instauración de dichos sistemas fue una gran novedad a mediados del siglo XX, que trajo consigo un cambio radical en la actividad científico-tecnológica, al crear nuevos marcos o contextos de acción. De nuevo estamos ante acciones tecnocientíficas cuyos objetivos no consisten en generar conocimiento, sino más bien en crear las condiciones de posibilidad para la investigación, el desarrollo y la innovación. La existencia de la tecnociencia depende por completo de estas políticas PCyT. De hecho, la tecnociencia solo ha surgido en los países donde existen este tipo de políticas, por lo que las PCyT han de ser consideradas como una condición de posibilidad de la tecnociencia. Por tanto, estamos ante otro de los rasgos distintivos entre la ciencia y la tecnociencia. La primera puede existir y desarrollarse en ausencia de políticas científicas previamente diseñadas, la segunda no. Con mayores o menores medios, los científicos han podido impulsar la investigación autónomamente a lo largo de la historia. La tecnociencia, en cambio, requiere una política científico-tecnológica explícitamente diseñada, sea esta pública, privada o secreta.

Los vínculos entre la ciencia y el poder son anteriores a la tecnociencia, puesto que aparecieron a finales del siglo XIX. Las comunidades científicas siempre han procurado incidir en ámbitos políticos, tanto para obtener financiación para su actividad como para mostrar la utilidad social y política de sus investigaciones (prestigio del país, modernización, solución de graves problemas sanitarios, nutritivos e industriales, etc.). Ello vale también para las comunidades de ingenieros y tecnólogos, que se han consolidado socialmente como expertos, asesores y profesionales de gran prestigio social, tanto en ámbitos políticos como empresariales. Así se fue consolidando a lo largo de los siglos XIX y XX lo que Sánchez Ron ha denominado el poder de la ciencia[18]. Los lobbies norteamericanos de científicos, militares, tecnólogos y grandes empresas son la expresión típica de ese nuevo poder[19]. Pero a partir de la segunda guerra mundial los cambios fueron cualitativos, porque algunos científicos, empezando por Vannevar Bush, se integraron en el núcleo mismo del poder político. Entonces es cuando surgió lo que cabe denominar con precisión política científico-tecnológica, como veremos con mayor detalle en el capítulo 4.

Hemos comprobado que la emergencia de la macrociencia, su crisis, y la posterior aparición de la tecnociencia en los años 80, estuvieron vinculadas a giros importantes en las políticas científicas de los EEUU. Para defender sus intereses, muchos científicos destacados pasaron a integrarse en las agencias y comités que tomaban las decisiones, además de asesorar directamente al Presidente de los EEUU. La época de la crisis de la macrociencia coincide con la eliminación por Nixon del consejo científico asesor del Presidente en enero de 1973 (Office of Sciece Policy), cuyas funciones fueron transferidas a la National Science Foundation. La ruptura de la conexión directa entre las comunidades científicas y la Presidencia fue muy criticada por los científicos, quienes hablaron de una contrarrevolución política contra la ciencia[20]. En abril de 1974, un Comité de la National Academy of Sciences recomendó una «presencia científica y tecnológica en la Casa Blanca»[21]. Es la época en que se propone la creación de agencias para la evaluación de tecnologías (Office of Technology Assessment). Nelson Rockefeller, el Vicepresidente de Ford, invirtió esa tendencia, al crear una Oficina de Política Científica y Tecnológica en el Gabinete Ejecutivo de la Presidencia. Ello permitió a los científicos volver a tomar posiciones en la Casa Blanca, aunque con una influencia mucho menor que en los años 40 y 50. La restauración del poder político de los científicos continuó con la Administración Carter, aunque algunos economistas de prestigio, como Milton Friedman, se opusieron a que el Gobierno y la Casa Blanca volvieran a involucrarse en ese tipo de cuestiones. Con la llegada de Reagan, los lobbies tecnocientíficos volvieron a tener gran influencia, contribuyendo a diseñar la política de liberalización de las patentes y de reducción de impuestos a las empresas de I+D anteriormente mencionadas. George Keyworth, el asesor científico de Reagan, desempeñó un papel muy importante a la hora de definir el nuevo contrato social de la ciencia, orientado ahora a la innovación tecnológica. Cabe decir, por tanto, que los cambios en la política científica de los EEUU fueron decisivos en la época de la crisis de la macrociencia militarizada y también en la emergencia de la tecnociencia.

Desde un punto de vista axiológico, el cambio de valores que trajo consigo la inserción de los científicos en las más altas esferas del poder político fue enorme. La actividad tecnocientífica se impregnó de valores políticos y jurídicos, puesto que son estos los que determinan el marco donde se van a desarrollar las investigaciones y el modo de plantearlas y llevarlas a cabo, así como los objetivos. Las líneas prioritarias las definen los gobiernos y los parlamentos, al igual que los marcos jurídicos donde van a poder desplegarse las acciones tecnocientíficas. Los científicos y tecnólogos que se insertan en la dirección y rediseño de los sistemas nacionales de ciencia y tecnología están obligados a asumir valores jurídicos, políticos y sociales ajenos a sus disciplinas. Por ejemplo, han de aprender a proponer presupuestos equilibrados, de modo que ninguna comunidad científica ni grupo mínimamente poderoso se sienta perjudicado o excluido. Ello no les impide potenciar algunas líneas incrementando la financiación, mediante acciones especiales o definiéndolas como líneas prioritarias. Un experto en política científica ha de dominar las artes presupuestarias y de gestión, además de estar muy atento a los sistemas de control del gasto que imponen los Parlamentos y los interventores del Estado. Muchos programas de políticas científica aparentemente bien concebido han fracasado por una deficiente gestión de los mismos. Definir los Planes Nacionales de Ciencia y Tecnología, por usar la terminología al uso en España, es una de las acciones tecnocientíficas principales, porque los términos en los que dichos planes se definan y los presupuestos que se asignen a cada una de las acciones serán decisivos a la hora de orientar el desarrollo tecnocientífico en una dirección o en otra. La política científica y tecnológica se convirtió así en una nueva disciplina, que era preciso dominar. La época de la tecnociencia se caracteriza por la consolidación de las instituciones de política científica y por el poder creciente de las mismas. Aquellas comunidades que no tienen representantes cualificados (y expertos en las artes de la política) en dichas instituciones suelen tener un negro futuro. El tradicional desdén de los científicos por los políticos desaparece casi por completo en la época de la tecnociencia.

Confirmamos de nuevo la hipótesis del pluralismo axiológico de la actividad tecnocientífica e incrementamos el número de subsistemas de valores que guían dicha actividad. Si no en toda la comunidad científica, al menos algunos representantes de sus élites correspondientes han de interiorizar plenamente los procedimientos y los valores de la vida política. El control político de las investigaciones científicas es uno de los temas centrales de debate en la época de la tecnociencia. En la época de Reagan, los científicos lograron que dichos controles se relajaran, recuperando parte de la autonomía de gestión que había logrado para ellos Vannevar Bush en los años 40. Los conflictos al respecto son continuos en los diversos sistemas de ciencia y tecnología, por lo que también en este caso comprobamos que la existencia de conflictos de valores forman parte de la médula de la actividad tecnocientífica.

g) Pluralidad de agentes tecnocientíficos.

La transición de la ciencia a la macrociencia cambió el sujeto de la ciencia, transformándolo en un sujeto plural. Con la llegada de la tecnociencia, este cambio se consolidó y se generalizó. Hoy en día se da por supuesto que una empresa tecnocientífica mínimamente importante, además de investigadores científicos, ingenieros y técnicos, ha de incluir otro tipo de equipos: gestores, asesores, expertos en marketing y en organización del trabajo, juristas, aliados en ámbitos político-militares, entidades financieras de respaldo, etc. El agente tecnocientífico tiene una estructura propia, porque nunca está formado por un solo individuo ni tampoco se reduce a un grupo de científicos, ingenieros y técnicos. En el interior de las empresas tecnocientíficas, y como componentes indispensables de las mismas, se incluye una gran diversidad de expertos. Todos ellos desempeñan tareas imprescindibles, aunque luego sean los científicos de prestigio quienes aparezcan como portavoces de dichas empresas a la hora de hacer públicos sus logros, caso de que se opte por hacerlos públicos. No solo cambia el exterior de la ciencia, al surgir un nuevo sistema de ciencia y tecnología. Tan importante es el cambio interno. El interior de la tecnociencia difiere radicalmente del interior de la ciencia, caso de que queramos mantener la distinción interno/externo.

La filosofía de la ciencia debatió largamente sobre el carácter objetivo del conocimiento científico o, por decirlo en términos de Popper, sobre la epistemología sin sujeto. Tras un proceso de aprendizaje, cualquier ser humano podía aceptar y hacer suyo el conocimiento científico. Las mentes de los científicos individuales, los «hombres de ciencia», eran los grandes yacimientos del conocimiento, aparte de las revistas, las bibliotecas y los materiales impresos que se comunicaban al resto de la comunidad científica. En el caso de la tecnociencia, en cambio, se requieren equipos complejos y heterogéneos de personas, así como diferentes tipos de medios e instrumentos. El sujeto de la tecnociencia es plural, no individual. O mejor, ni siquiera cabe hablar de sujeto, sino de agente, actor o hacedor. Este siempre es plural, porque se requiere el concurso de diversos tipos de expertos y de numerosos artefactos para que una acción tecnocientífica produzca resultados aceptables. Del sujeto individual de la ciencia moderna (el genio) se pasa al equipo investigador con toda una estructura empresarial, administrativa, política y jurídica de soporte. Para que los resultados de la investigación científica sean plenamente aceptables no basta con las aportaciones epistémicas. Además, se requiere que el conocimiento científico genere desarrollo tecnológico e innovación, de modo que dicho conocimiento se transfiera a las empresas e instituciones. Por tanto, la propia noción de aceptabilidad se modifica. Para serlo, las empresas tecnocientíficas han de interiorizar ese cambio, organizándose de otra manera.

Desde una perspectiva axiológica, ello implica que las acciones del sujeto de la tecnociencia están guiadas por un sistema plural de valores, puesto que el propio sujeto de la tecnociencia es plural. Dicho sujeto puede ser visualizado de la manera siguiente: incluye, como mínimo, un científico, un ingeniero, un empresario, un militar y un político, aunque puede ser más amplio y variado dando entrada a un jurista, un evaluador, un experto en gestión y un inversor, sin olvidar a los expertos en marketing y a los administrativos. Cada uno de estos agentes actúa en función de sus propios valores. Puesto que todos ellos componen conjuntamente el «sujeto de la tecnociencia», los conflictos de valores se producen en el interior mismo de dicho sujeto, por ser un sujeto plural. Dichos conflictos llegarán a puntos de equilibrio más o menos estables, o no. En cualquier caso, podemos concluir que los conflictos de valores forman parte de la estructura de la actividad tecnocientífica, contemplada esta desde la perspectiva axiológica en la que nos hemos situado.