Prólogo

La revolución científica se inició en las últimas décadas del siglo XVI y se desarrolló a lo largo del siglo XVII. Sus impulsores (Copérnico, Galileo, Harvey, Descartes, Huygens, Leibniz, Newton y otros muchos) cambiaron radicalmente la concepción europea del mundo, rompiendo con los moldes aristotélico-escolásticos que habían predominado durante el medievo. El cambio fue lento y se produjo en algunos países europeos (Italia, Holanda, Gran Bretaña, Francia, Alemania), propagándose poco a poco al resto de Europa y al Norte de América. Afectó únicamente a algunas disciplinas (astronomía, matemáticas, física, medicina), que fueron la vanguardia del cambio filosófico y metodológico. Posteriormente, la matematización del conocimiento y la metodología experimental fueron llegando a las demás ciencias, con la consiguiente irrupción de nuevas teorías en química, biología, geología y, finalmente, en el ámbito de las ciencias sociales.

Para impulsar la nueva filosofía natural, inspirada en el programa baconiano, se crearon nuevas instituciones (Sociedades científicas, observatorios astronómicos, laboratorios, etc.), en torno a las cuales se aglutinaron las comunidades científicas emergentes. Las Universidades se opusieron al cambio, salvo raras excepciones, originándose célebres procesos y disputas entre los defensores de la nueva metodología científica y los mantenedores del método aristotélico y de la estructura medieval del saber. Como resultado de este largo proceso, la ciencia moderna se fue institucionalizando poco a poco, con notables diferencias según los países y las disciplinas.

A lo largo del siglo XVIII, los científicos encontraron importantes aliados en los impulsores de la Revolución Industrial, sobre todo en Gran Bretaña, donde la ciencia newtoniana tuvo una amplia difusión social. Con la Revolución francesa y la instauración de la educación obligatoria, la difusión social de los conocimientos científicos quedó garantizada progresivamente, al par que se creaba un sistema de reproducción de las comunidades científicas emergentes. Durante el siglo XIX otros países europeos siguieron el ejemplo francés, con lo que la ciencia se insertó en el sistema educativo europeo, culminándose la revolución científica. La Universidad Humboldt en Alemania y la Polytechnique francesa se convirtieron en modelos a imitar en todo el continente.

La primera revolución industrial se produjo en Gran Bretaña. Su impacto social, económico y político fue enorme en Europa. Uno de sus principales motores fue la tecnología. La ciencia solo tuvo una influencia indirecta en el desarrollo industrial. Ambas revoluciones, la científica y la industrial, han sido constitutivas de la Era Moderna, junto con los profundos cambios políticos que llevaron a instaurar formas democráticas de gobierno en algunos países europeos, así como en los EEUU de América. Durante la Segunda Revolución Industrial, la alianza entre la industria, la tecnología y la ciencia se consolidó en algunos países (Gran Bretaña, Alemania, en menor medida Francia), generándose dos nuevas profesiones, la de científico y la de ingeniero. A lo largo del siglo XIX la ciencia y la tecnología interactuaron estrechamente, con mutuos beneficios, aun formando parte de sectores profesionales claramente diferenciados. Los científicos comenzaron a mostrar que sus conocimientos podían ser muy útiles para la industria y para la guerra. Los países que promovieron la colaboración entre la ciencia, la tecnología y la industria, se convirtieron en grandes potencias a lo largo del siglo XIX, en detrimento de antiguas potencias (España, Portugal, Turquía) que no dieron el paso a la nueva sociedad científico-industrial.

Tomando como referente estas dos grandes revoluciones de la Era Moderna[1], en este libro vamos a analizar un cambio no menos importante, la revolución tecnocientífica, que implica un nuevo modo de hacer ciencia. Se inició en los EEUU en la época de la Segunda Guerra Mundial, se consolidó con la Guerra Fría y, ulteriormente se ha ido extendiendo a otros países, en particular por Europa, Japón y Canadá. Nos centraremos en los EEUU, puesto que, así como la ciencia moderna fue una creación europea, la tecnociencia contemporánea tiene una fuerte impronta norteamericana. Distinguiremos tres etapas. En la primera (1940-1965), emerge la macrociencia (Big Science), a la que consideraremos como la primera modalidad de tecnociencia. La investigación básica desempeñó un papel fundamental como motor de la macrociencia, sobre todo en el ámbito de la física, pero también de la química y las matemáticas. Tras una década de crisis y estancamiento (1966-1976), provocada por el fracaso norteamericano en la guerra del Vietnam y por la amplia contestación social que se suscitó en los EEUU y en Europa contra la macrociencia militarizada (mayo de 1968), en el último cuarto de siglo surgió la tecnociencia propiamente dicha, impulsada por algunas grandes empresas, más que por los Estados, y centrada en el desarrollo de nuevas tecnologías. La tecnociencia también procede de los EEUU, aunque se ha expandido rápidamente por otros países. La Unión Soviética no fue capaz de dar el nuevo salto, por falta de capacidad financiera y de tejido empresarial. Si consideramos a la macrociencia y a la tecnociencia como la primera y la segunda revolución tecnocientífica, respectivamente, cabe decir que el actual predominio militar, económico, político, diplomático y comercial de los EEUU proviene, entre otras razones, de su liderazgo tecnocientífico.

La ciencia no ha desaparecido. Las Sociedades científicas y la ciencia académica siguen existiendo. Sin embargo, sus dos nuevos retoños, la macrociencia y la tecnociencia, manifiestan un enorme empuje, hasta el punto de que algunos autores tienden a pensar que, hoy en día, todo es tecnociencia. Trataremos de mostrar que no es así, especificando las diferencias que hay entre la ciencia y la macrociencia, en primer lugar (capítulo 1), y entre la ciencia y la tecnociencia (capítulo 2). La revolución tecnocientífica difiere en aspectos fundamentales de las revoluciones científicas de las que habló Kuhn, motivo por el cual dedicaremos el capítulo 3 a precisar esas diferencias. Más que el conocimiento, transforma la práctica científico-tecnológica, generando una nueva estructura, los sistemas nacionales de ciencia y tecnología (SCyT), de los que nos ocuparemos brevemente en el capítulo 4, centrándonos en el sistema norteamericano, que sigue siendo el canónico. Aunque el desarrollo de la tecnociencia ha generado nuevas teorías científicas y grandes descubrimientos, los paradigmas básicos siguen subsistiendo en física, química, biología y matemáticas. No estamos ante una revolución epistemológica ni metodológica, aunque haya habido grandes cambios en el conocimiento y en los métodos científicos, sino ante una revolución praxiológica. Por ello trataremos de analizar la nueva estructura de la práctica científico-tecnológica, que es la característica más acusada de la revolución tecnocientífica. Para ello trataremos de elucidar dos conceptos básicos:los sistemas tecnocientíficos y las acciones tecnocientíficas. Frente a la revolución científica del XVII, que modificó la estructura del conocimiento, la revolución tecnocientífica del siglo XX ha transformado ante todo la estructura de la práctica científico-tecnológica. En particular, han cambiado los sistemas de valores que guían la actividad científica, razón por la cual dedicaremos el capítulo 5 a la axiología de la tecnociencia. No es la única aproximación filosófica posible, pero a nuestro entender es una de las más claras y prometedoras. Los valores de la tecnociencia son mucho más amplios y complejos que los de la ciencia moderna. Los conflictos de valores son una componente estructural de la tecnociencia.

La revolución tecnocientífica no solo ha cambiado las ciencias y las tecnologías. Además, ha contribuido a generar un gran cambio económico y social, la revolución informacional, que se inició en las últimas décadas del siglo XX y que, previsiblemente, se seguirá desarrollando durante el siglo XXI. La vinculación entre la tecnociencia y la emergente sociedad de la información es estrechísima, por lo que dicha alianza puede ser comparada con la que mantuvieron la ciencia y la tecnología modernas con la revolución industrial. Estas dos nuevas revoluciones no tienen su origen en Europa, sino en los EEUU de América, que han pasado a convertirse en una potencia hegemónica en todo el mundo, en parte por su decidido apoyo a la tecnociencia. Así como la ciencia moderna fue europea, la tecnociencia es norteamericana, al igual que la revolución informacional. En el momento actual ambas revoluciones se expanden por otros países. Al hacerlo, surgen versiones diferentes de la tecnociencia, en función de las diversas culturas en las que se inserta. Cabe decir que el Primer Mundo está formado por aquellos países en donde estas dos nuevas revoluciones se han consolidado, o están en avanzada fase de desarrollo. Al concepto moderno de desarrollo industrial, científico y tecnológico, hay que añadir la noción contemporánea de desarrollo tecnocientífico e informacional. Un país puede ser una potencia científica e industrial, y sin embargo estar subdesarrollado desde el punto de vista tecnocientífico e informacional. Por ello entendemos que la tecnociencia es uno de los grandes desafíos del siglo XXI.

Los nuevos modos de producción de riqueza y conocimiento han modificado radicalmente las relaciones de poder y la distribución de la riqueza en los países, regiones y empresas. El poder militar, por ejemplo, requiere un alto desarrollo tecnocientífico e informacional. Conviene tener presente que la tecnociencia no solo sirve para crear, descubrir, inventar y construir, sino también para aniquilar y destruir. Los vínculos entre la tecnociencia y las instituciones militares han sido y siguen siendo estrechísimos, y ello desde el origen de la macrociencia. Los seres humanos han desarrollado infinidad de conflictos bélicos a lo largo de la historia, pero la Segunda Guerra Mundial y las contiendas ulteriores en las que han participado los EEUU (Corea, Guerra Fría, Vietnam, Golfo Pérsico, Kosovo, Afganistán…) suponen una novedad radical: la tecnociencia es una condición necesaria para la victoria militar. Por muchos soldados y mucha valentía que se posea, la derrota bélica está garantizada si no se tiene un desarrollo tecnocientífico adecuado. Otro tanto cabe decir del ámbito empresarial, sobre todo en la época de la globalización. En resumen, la tecnociencia es una condición de posibilidad del poder económico y militar, razón por la cual los países más poderosos son los que tienen un alto nivel de desarrollo tecnocientífico e informacional. La curiosidad y la búsqueda de conocimiento pudieron estar a la base de la emergencia de la ciencia moderna. En cambio, la lucha por el poder es el motor de la tecnociencia contemporánea. Por ello acabaremos esta obra con una reflexión sobre la tecnociencia y el poder.

La revolución de la ciencia moderna ha sido ampliamente estudiada por historiadores, sociólogos y filósofos. La historia, la filosofía y la sociología de la ciencia se constituyeron a principios del siglo XX y se centraron en el estudio de la ciencia moderna, incluidas las revoluciones científicas del siglo XIX y principios del XX: química (tabla periódica, química orgánica), matemáticas (Análisis, geometrías no euclídeas, teoría de conjuntos), biología (Darwin, Mendel), Geología (Lyell) y Física (Einstein, teoría cuántica). La filosofía de la ciencia, que constituye el punto de partida de esta obra, ha sido ante todo lógica, epistemología y metodología de la ciencia. Por ello se ha ocupado del análisis y reconstrucción del conocimiento científico, centrándose en los conceptos, leyes, hechos y teorías, instaurando la distinción teórico/observacional, subrayando los aspectos lógico-lingüísticos del conocimiento y desarrollando concepciones enunciativas del método científico, tanto lógico-deductivas como lógico-inductivas y estadísticas. Sin minusvalorar esa metateoría de la ciencia, que ha hecho grandes aportaciones a los estudios de la ciencia, pensamos que resulta insuficiente para abordar la tecnociencia. Puesto que la ciencia ha cambiado, convirtiéndose en tecnociencia, la filosofía de la ciencia ha de modificar considerablemente sus planteamientos, deviniendo filosofía de la tecnociencia. Para eso ha de centrarse más en la actividad científica que en el conocimiento, desarrollando una teoría de la acción científica y prestando mucha más atención a la tecnología. El principal propósito del presente libro consiste en dar pasos en esa dirección, sin olvidar el punto de partida, pero abordando un nuevo objeto de reflexión, la tecnociencia, que difiere en muchos y muy relevantes aspectos de la ciencia y la tecnología modernas. Lo que decimos de la filosofía de la ciencia vale también para otros estudios de ciencia y tecnología, es decir para la historia, la sociología, la pegagogía la psicología, la antropología, la política o la economía de la ciencia y la tecnología, aunque aquí no vayamos a ocuparnos de esas cuestiones. Si la ciencia ha cambiado, como mantendremos en estas páginas, los estudios de ciencia y tecnología también han de cambiar, prestando mayor atención a la ciencia del siglo XX, que ya es historia, aunque en buena medida sin hacer. Por ello nos limitaremos a un período de tiempo, el posterior a la segunda guerra mundial, y a un país, los EEUU, que es donde surgió la tecnociencia. Es seguro que la indagación del desarrollo de la macrociencia y la tecnociencia en la URSS, en Europa, en Japón y en otros países aportará matizaciones importantes a las tesis que aquí vamos a afirmar. Aun así, esperamos que esta primera incursión en la filosofía de la tecnociencia del siglo XX pueda aportar algo a los estudios de ciencia, tecnología y sociedad, no solo a la filosofía de la ciencia. En conjunto, se trata de desarrollar los estudios de la tecnociencia, filosóficos, sociológicos, históricos, pedagógicos o de otro tipo, incluyendo estudios científicos sobre la tecnociencia (cientometría, indicadores de desarrollo tecnocientíficos, etc.). Los estudios CTS (Ciencia, Tecnología y Sociedad) constituyen el ámbito donde pueden confluir e interactuar todas estas perspectivas.

Nosotros nos ceñiremos ante todo a las cuestiones axiológicas, porque completan los estudios epistemológicos y metodológicos clásicos, y porque la Axiología de la Ciencia y de la Tecnología está mucho menos desarrollada. Resumiendo, en este libro expondremos las tesis siguientes:

1) A lo largo del siglo XX, y sobre todo a partir de la Segunda Guerra Mundial, ha aparecido y se ha consolidado una nueva modalidad de ciencia, la tecnociencia o megaciencia (Big Science)[2]. Inicialmente usaremos ambas expresiones como sinónimas, aunque luego estableceremos matices diferenciales entre ambas.

2) Dicho cambio es lo suficientemente importante como para que podamos compararlo con la revolución científica moderna. Por ello hablaremos de revolución tecnocientífica, o mejor, de revoluciones tecnocientíficas, puesto que se producen en casi todas las disciplinas científicas, aunque de manera diversa en unas y otras.

3) La revolución tecnocientífica es uno de los motores principales, aunque no el único, de un cambio social y económico más profundo, la revolución informacional, que por su relevancia puede ser comparado a la revolución industrial. Dicho sucintamente: así como la ciencia fue vital para el desarrollo de la sociedad industrial, así también la tecnociencia es una componente básica de la sociedad informacional.

4) Los diversos estudios sobre la ciencia y la tecnología (históricos, filosóficos, sociológicos, políticos, culturales, antropológicos, económicos, etc.) han de afrontar el reto suscitado por la revolución tecnocientífica, dando lugar a los estudios de la tecnociencia. Esta tendencia ya se advierte en los últimos años del siglo XX, caracterizados por una profunda transformación de los estudios transdisciplinares de ciencia y tecnología.

5) En el caso de la filosofía de la ciencia y de la tecnología, perspectiva desde la cual se escribe este libro, es preciso ocuparse ante todo del análisis filosófico de la actividad tecnocientífica, en lugar de centrarse en el conocimiento científico o en los artefactos tecnológicos, como han hecho tradicionalmente la filosofía de la ciencia y la filosofía de la tecnología. Conforme a ello, haremos unas primeras propuestas para analizar la estructura de la actividad tecnocientífica. Para ello estudiaremos el momento que, por lo general, es considerado fundacional de la macrociencia, es decir el informe de Vannevar Bush (1945), en el que se diseñó el sistema científico tecnológico que permitió la consolidación de la tecnociencia en EEUU, y posteriormente en otros países industrial, tecnológica y científicamente desarrollados.

6) La filosofía de la ciencia del siglo XX dedicó muchos esfuerzos a justificar el conocimiento científico, su objetividad y racionalidad. Una de las vías que siguió para ello fue la búsqueda de los fundamentos de la ciencia. Se sobreentendía que, puesto que la ciencia era conocimiento, dichos fundamentos (principios, leyes, estructura lógica de las teorías, base empírica, hechos) también debían ser conocimiento, o a lo sumo metodología para obtener conocimiento válido. A nuestro juicio, esta vía es inadecuada para indagar los fundamentos de la tecnociencia. Al problema filosófico tradicional de la justificación del conocimiento científico se le superpone otra cuestión, acaso más importante: la validación de la práctica científica.

7) Por último, y prosiguiendo la línea seguida en publicaciones recientes[3], nos ocuparemos ante todo de los valores de la tecnociencia (capítulo 5), por ser uno de los ámbitos donde la revolución tecnocientífica tiene mayor impacto. Frente a la neutralidad axiológica de la tradición positivista y a la restricción a los valores epistémicos o valores internos a la ciencia (Laudan), afirmaremos y desarrollaremos la tesis del pluralismo axiológico de la tecnociencia, que incluye el supuesto de conflictos axiológicos continuados en la actividad tecnocientífica. Para analizar los valores de la tecnociencia en sus diversos contextos y situaciones usaremos dos instrumentos formales, las matrices de evaluación y las cotas o umbrales de evaluación. En el capítulo 5 mostraremos que los indicadores de ciencia y tecnología que se usan habitualmente en política científica son modalidades de dichas matrices, así como los diversos protocolos de evaluación que se utilizan en la práctica tecnocientífica cotidiana. La axiología proporciona un poderoso instrumento de análisis que aglutina e integra en un mismo marco conceptual a las diversas herramientas usadas hoy en día para valorar las acciones tecnocientíficas y sus resultados. Esta será la aportación práctica más significativa de esta obra.

Las ideas desarrolladas en este libro son fruto de diversos seminarios, cursos, conferencias y debates en los que el autor ha participado en los últimos años. Las facilidades recibidas del Instituto de Filosofía del CSIC, y en particular de su Director, José María González, me permitieron encontrar algo de tiempo para poner en limpio múltiples borradores y organizar ese conjunto de ideas, sugerencias y propuestas. El apoyo económico del Ministerio de Ciencia y Tecnología (Proyectos PB 98-0495-C08-01 y BFF2002-04454-C10-01) posibilitó la organización de varios de esos seminarios y congresos, en los que tuve oportunidad de contrastar las tesis iniciales e irlas mejorando, gracias a las múltiples críticas recibidas, que agradezco profundamente. Francisco Álvarez y Armando Menéndez han sido quienes más estrechamente colaboraron conmigo, aunque otras muchas personas hicieron aportaciones de gran interés: Adelaida Ambrogi, Roberto R. Aramayo, Fernando Broncano, José Antonio Díez Calzada, Anna Estany, José Luis Falguera, José Ferreirós, Amparo Gómez, Marta González, José Luis González Quirós, Mercedes Iglesias, Carlos López Beltrán, José Antonio López Cerezo, José Luis Luján, Sergio Martínez, Javier Moscoso, Emilio Muñoz, León Olivé, Javier Ordóñez, Francisco Pérez, Ana Rosa Pérez Ransanz, Eulalia Pérez Sedeño, Miguel Angel Quintanilla, Ana Rioja, Concha Roldán, Frenando Sáez Vacas, Jesús Sánchez, José Manuel Sánchez Ron, María Jesús Santesmases, Juan Vázquez, Jesús Vega, Ambrosio Velasco y Jesús Zamora Bonilla, entre otros. La Unidad Asociada entre la Universidad del País Vasco y el CSIC, que codirijo con Andoni Ibarra, fue otro de los foros donde se debatieron estas propuestas, al igual que la Unidad Asociada entre la Universidad de Sevilla y el CSIC, codirigida por Ramón Queraltó. Este libro no hubiera sido posible sin el apoyo decidido que dieron a su publicación María Luisa Capela y Héctor Subirats como anteriores responsables del equipo del FCE en España, así como sus sucesores, Ricardo Navarro y Juan Guillermo López, quienes tuvieron que sufrir alguna demora en la entrega del original. Pero quienes tuvieron mayor paciencia conmigo fueron Belén e Irene, ya en el ámbito doméstico, donde el ordenador estuvo demasiado tiempo encendido en los últimos meses.

A todos/as ellos/as mi más sincero agradecimiento.

J.E.

Enero 2003