1 · Microciencia y macrociencia.
Derek J. de Solla Price, físico e historiador de la ciencia, impartió en 1962 las conferencias Pegram en el Laboratorio Nacional de Brookhaven, uno de los más importantes de los EEUU para la aplicación pacífica de la energía nuclear. En ellas se propuso introducir una metodología cuantitativa para el estudio de la ciencia. «¿Por qué no aplicar los recursos de la ciencia a la ciencia misma? ¿Por qué no medir y generalizar, plantear hipótesis y extraer conclusiones?» —se preguntaba al empezar[1]. Conforme a su formación de físico, Solla Price se interesó por el tamaño y la forma de la ciencia, en lugar de centrarse en los contenidos, las teorías y los descubrimientos, como habían hecho los filósofos e historiadores de la ciencia desde principios del siglo XX. «Considerando la ciencia como una entidad mensurable» —decía— «intentaré calcular el personal científico, la literatura, el talento y los gastos a escala nacional e internacional»[2]. A dichas magnitudes se les llama actualmente indicadores del desarrollo científico y tienen gran importancia para orientar las políticas científicas. Esta línea de indagación generó una nueva disciplina, la Cientometría (Scientometrics), que ha tenido gran desarrollo en la segunda mitad del siglo XX y forma parte de los estudios cuantitativos sobre ciencia y tecnología.
Los datos que presentó Solla Price, todos ellos referidos a los EEUU, le permitieron afirmar que la ciencia había crecido exponencialmente en tamaño durante el siglo XX. Dicho incremento afectó al número de científicos, las publicaciones, las novedades y descubrimientos logrados y también a la financiación de la actividad científica. Por poner un ejemplo, en los años 60 vivía el 80-90% de los científicos que jamás había habido en la historia. Ese crecimiento vertiginoso le llevó a proponer la hipótesis de que la ciencia había entrado en una nueva fase, la Gran Ciencia o macrociencia (Big Science). La caracterizó mediante dos leyes matemáticas, ambas conjeturales y sujetas a contrastación empírica: la ley de crecimiento exponencial y la ley de saturación. La primera afirmaba que «la ciencia crece a interés compuesto, multiplicándose por una cantidad determinada en iguales períodos de tiempo»[3]. El período de duplicación del tamaño de la ciencia lo fijó en 15 años. La segunda ley matizaba la exponencialidad y proponía como modelo de crecimiento la curva logística, según el cual el crecimiento exponencial con duplicación cada 15 años no es más que el comienzo de una curva logística, que posteriormente llega a un techo o línea de saturación. A partir de dicha cota el crecimiento puede estancarse, en cuyo caso la ciencia entraría en una fase de senilidad, o bien puede recuperar el ritmo exponencial, entrando en una nueva fase de crecimiento acelerado[4]. Cuarenta años después, no cabe duda de que la segunda hipótesis ha sido la acertada.
Los datos y los modelos matemáticos propuestos por Solla Price han sido corregidos y afinados ulteriormente por los expertos en Cientometría, pero en gran medida siguen siendo válidos. Desde una perspectiva filosófica, lo que interesa es que la ley de crecimiento exponencial le llevó a proponer una distinción conceptual que ha tenido gran aceptación entre los científicos: por una parte existiría la Pequeña Ciencia (siglos XVII, XVIII y XIX) y por otra la Gran Ciencia (siglo XX). Ambas se distinguen por su ritmo de crecimiento, muy lento en el primer caso, muy rápido en el segundo. Conviene considerar si esa distinción entre dos tipos de ciencia se justifica filosóficamente y, sobre todo, si las diferencias de tamaño y de ritmo de crecimiento son razón suficiente para introducir una distinción conceptual tan importante y si esta es puramente cuantitativa, o también cualitativa.
La noción de macrociencia (Big Science) había sido sugerida el año anterior por Alvin Weinberg, quien había sugerido un criterio económico para definirla: para que un proyecto sea considerado como macrocientífico es preciso que su realización requiera una parte significativa del producto interior bruto (PIB) de un país[5]. Conforme al criterio de Weinberg, la distinción entre ciencia y macrociencia es ante todo presupuestaria[6]. Solla Price aceptó este criterio económico, pero quiso precisarlo y formalizarlo. Para ello propuso un modelo matemático que justificaba la necesidad de incrementar considerablemente la financiación de la ciencia. La distinción conceptual que introdujo afirmaba que la investigación científica había entrado en un nuevo estadio histórico, razón por la que había que replantearse el problema de su financiación: «la ciencia de hoy desborda tan ampliamente la anterior, que resulta evidente que hemos entrado en una nueva era que lo ha barrido todo, a excepción de las tradiciones científicas básicas»[7]. Por último, Solla Price sugirió que su investigación no era más que un primer paso: «si hemos de caracterizar la fase actual como algo nuevo, distinto de la ciencia burguesa común a Maxwell, a Franklin y a Newton, no podemos basarnos únicamente en una tasa de crecimiento»[8]. Dejaba así abierta la vía para distinguir la macrociencia de la ciencia no solo por su tamaño, sino también mediante criterios cualitativos y culturales.
La cuestión fue retomada en un Simposio organizado por la Universidad de Stanford en 1988, cuyas Actas han sido editadas por dos historiadores de la ciencia, Peter Galison y Bruce Hevly. Para Hevly, «la macrociencia no es ciencia hecha con instrumentos grandes o caros»[9]. Los altos presupuestos y los grandes instrumentos son indicadores del cambio, pero, según Hevly, la macrociencia se caracterizó desde el principio por[10]:
- La concentración de los recursos en un número muy limitado de centros de investigación.
- La especialización de la fuerza de trabajo en los laboratorios.
- El desarrollo de proyectos relevantes desde el punto de vista social y político, que contribuyen a incrementar el poder militar, el potencial industrial, la salud o el prestigio de un país.
En dicho Simposio también se debatió el problema del origen de la macrociencia, así como su evolución ulterior. El propio Hevly apuntó otras peculiaridades de la macrociencia, que se han ido manifestando a lo largo de su evolución posterior[11]:
- La relación entre ciencia y tecnología ha tomado nuevas formas, que han influido en la naturaleza de ambas.
- La macrociencia requiere la interacción entre científicos, ingenieros y militares. Galison confirmó este punto, al afirmar tajantemente que «es manifiestamente imposible examinar la gran ciencia sin tener en cuenta la ciencia de la guerra»[12].
Otros autores también presentaron otras propuestas para caracterizar la macrociencia. Robert W. Smith, por ejemplo, recuerdó que «entre las características que han sido identificadas en la gran ciencia están la politización, la burocratización, el alto riesgo y la pérdida de autonomía»[13]. Galison dijo que la megaciencia tiene muchas caras, por lo que su indagación es difícil y compleja. Todos los analistas apuntaron que la discontinuidad entre la ciencia pequeña y la grande es en parte ficticia, lo cual no impide la conveniencia de mantener dicha distinción. Panofsky, uno de los grandes promotores de la Gran Ciencia en la Universidad de Stanford (proyecto MARK III), dijo que «no hay conflicto entre la pequeña y la gran ciencia, y de hecho hay un continuo de escala entre las diferentes actividades»[14]. Con ello retomaba las tesis iniciales de Solla Price, insistiendo en que el tránsito de la ciencia a la megaciencia fue evolutivo, no revolucionario.
No faltaron autores que investigaron la emergencia de la megaciencia en Europa (el CERN) o en Japón (ciudad de la ciencia de Tsukuba), mostrando que hay diferencias culturales importantes en su desarrollo según los países y las disciplinas. En resumen, tanto los participantes en el Simposio de Stanford como otros autores que se han ocupado de esta cuestión, coinciden a la hora de usar el término «macrociencia» para aludir a una nueva etapa del desarrollo de la ciencia, pero difieren entre sí a la hora de intentar precisarlo y definirlo. La mayoría de los estudiosos suscribirían la afirmación de Sánchez Ron, según la cual «la Gran Ciencia es un procedimiento de investigación característico de nuestro siglo»[15], refiriéndose al siglo XX. Pero sobre las notas que definen a la Gran Ciencia las posturas son muy diversas. Inferimos de todo ello que merece la pena precisar conceptualmente las diferencias entre la ciencia y la megaciencia y optamos por una perspectiva filosófica para ella. No en vano la filosofía se ha esforzado en elucidar los conceptos a lo largo de su historia.
A lo largo de esta obra mantendremos que a lo largo del siglo XX no solo han cambiado el tamaño y el ritmo de crecimiento de la ciencia, sino algo mucho más profundo, a saber: la estructura de la actividad tecnocientífica. La caracterización económica de Weinberg y los modelos cuantitativos de Solla Price son indicadores de dicho cambio, pero no son su causa. La emergencia de la megaciencia implicó un cambio profundo en la práctica científica, del que se derivan otros muchos cambios, algunos de gran envergadura. Por ello, mantendremos también la tesis de que a lo largo del siglo XX se ha producido una profunda revolución en la ciencia y la tecnología: una revolución tecnocientífica. Puesto que, al hablar de revoluciones científicas, la obra de Thomas Kuhn es de referencia obligada, no solo nos ocuparemos de distinguir la ciencia de la macrociencia y la tecnociencia (capítulo 1), sino que también analizaremos la noción de «revolución tecnocientífica», distinguiéndola de las revoluciones científicas kuhnianas (capítulo 2). Dicho sucintamente, las revoluciones científicas que estudió Kuhn (Copérnico, Galileo, Newton, Lyell, Lavoisier, Einstein, mecánica cuántica, etc.) transformaron ante todo la estructura del conocimiento científico. La revolución tecnocientífica del siglo XX, en cambio, está basada en un cambio radical de la estructura de la actividad científica, y por ello tiene múltiples facetas a analizar, incluidos los cambios de teoría que de ella se derivaron. Dicho cambio de estructura trajo consigo un incremento del tamaño de la ciencia, pero también modificó los objetivos de la ciencia, las comunidades científicas, los modos de organización de la investigación y los criterios de valoración de los resultados. En particular, produjo una profunda simbiosis entre ciencia y tecnología. Asimismo mantendremos que, tras la emergencia de la macrociencia, la progresiva empresarialización e informatización de la actividad investigadora generó a su vez un nuevo cambio cualitativo, que se ha manifestado sobre todo en el último cuarto del siglo XX. Por ello diremos que la macrociencia fue un preludio de la tecnociencia, o si se quiere una fase de transición. Filosóficamente hablando, el gran cambio experimentado por la ciencia en el siglo XX se analiza mejor si hablamos de tecnociencia que de macrociencia. Por esta razón consideraremos a la macrociencia como la primera modalidad de tecnociencia.