© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_59

59. Interval Censored Data Analysis for Assessing Mean Time to Cancer Relapse (51 Patients)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 
Previously partly published in Machine learning in medicine a complete overview, Chap. 79, Springer Heidelberg Germany, 2015, from the same authors.

1 General Purpose

In survival studies often time to first outpatient clinic check instead of time to event is measured. Somewhere in the interval between the last and current visit an event may have taken place. For simplicity such data are often analyzed using the proportional hazard model of Cox (Chaps. 56 and 57). However, this analysis is not entirely appropriate here. It assumes that time to first outpatient check is equal to time to relapse. Instead of a time to relapse, an interval is given, in which the relapse has occurred, and so this variable is somewhat more loose than the usual variable time to event. An appropriate statistic for the current variable would be the mean time to relapse inferenced from a generalized linear model with an interval censored link function, rather than the proportional hazard method of Cox.

2 Schematic Overview of Type of Data File

A211753_2_En_59_Figa_HTML.gif

3 Primary Scientific Question

This chapter is to assess whether an appropriate statistic for the variable “time to first check” in survival studies would be the mean time to relapse, as inferenced from a generalized linear model with an interval censored link function.

4 Data Example

In 51 patients in remission their status at the time-to-first-outpatient-clinic-control was checked (mths = months).
Time to 1st check (month)
Result relapse 0 = no
Treatment modality 1 or 2 (0 or 1)
11
0
1
12
1
0
9
1
0
12
0
1
12
0
0
12
0
1
5
1
1
12
0
1
12
0
1
12
0
0
The first ten patients are above. The entire data file is entitled “chapter59intervalcensored”, and is in extras.springer.com. Cox regression was first applied. Start by opening the data file in SPSS statistical software.

5 Cox Regression

For analysis the statistical model Cox Regression in the module Survival is required.
Command:
  • Analyze….Survival….Cox Regression….Time : time to first check….Status : result….Define Event….Single value: type 1….click Continue….Covariates: enter treatment….click Categorical….Categorical Covariates: enter treatment….click Continue….click Plots….mark Survival….Separate Lines for: enter treatment….click Continue….click OK.
Variables in the equation
 
B
SE
Wald
df
Sig.
Exp(B)
Treatment
.919
.477
3.720
1
.054
2.507
A211753_2_En_59_Figb_HTML.gif
The above table is in the output. It shows that treatment is not a significant predictor for relapse. In spite of the above Kaplan-Meier curves, suggesting the opposite, the treatments are not significantly different from one another because p > 0,05. However, the analysis so far is not entirely appropriate. It assumes that time to first outpatient check is equal to time to relapse. However, instead of a time to relapse an interval is given between 2 and 12 months in which the relapse has occurred, and so this variables is somewhat more loose than the usual variable time to event. An appropriate statistic for the current variable would be the mean time to relapse inferenced from a generalized linear model with an interval censored link function, rather than the proportional hazard method of Cox.

6 Interval Censored Analysis in Generalized Linear Models

For analysis the module Generalized Linear Models is required. It consists of two submodules: Generalized Linear Models and Generalized Estimation Models. The first submodule covers many statistical models like gamma regression (Chap. 30), Tweedie regression (Chap. 31), Poisson regression (Chaps. 21 and 47), and the analysis of paired outcomes with predictors (Chap. 3). The second is for analyzing binary outcomes (Chap. 42). For the censored data analysis the Generalized Linear Models submodule of the Generalized Linear Models module is required.
Command:
  • Analyze….click Generalized Linear Models….click once again Generalized Linear Models….Type of Model….mark Interval censored survival….click Response…. Dependent Variable: enter Result….Scale Weight Variable: enter “time to first check”….click Predictors….Factors: enter “treatment”….click Model….click once again Model: enter once again “treatment”….click Save….mark Predicted value of mean of response….click OK.
Parameter estimates
Parameter
B
Std. Error
95 % Wald confidence interval
Hypothesis test
Lower
Upper
Wald Chi-Square
df
Sig.
(Intercept)
.467
.0735
.323
.611
40.431
1
.000
[treatment = 0]
−.728
.1230
−.969
−.487
35.006
1
.000
[treatment = 1]
0a
           
(Scale)
1b
           
Dependent variable: Result
Model: (Intercept), treatment
aSet to zero because this parameter is redundant
bFixed at the displayed value
The generalized linear model shows, that, after censoring the intervals, the treatment 0 is, compared to treat 1, a very significant better maintainer of remission. When we return to the data, we will observe as a novel variable, the mean predicted probabilities of persistent remission for each patient. This is shown underneath for the first ten patients. For the patients on treatment 1 it equals 79,7 %, for the patients on treatment 0 it is only 53,7 %. And so, treatment 1 performs, indeed, a lot better than does treatment 0 (mths = months).
Time to first check (mths)
Result (0 = remission 1 = relapse)
Treatment (0 or 1)
Mean Predicted
11
0
1
,797
12
1
0
,537
9
1
0
,537
12
0
1
,797
12
0
0
,537
12
0
1
,797
5
1
1
,797
12
0
1
,797
12
0
1
,797
12
0
0
,537

7 Conclusion

This chapter assesses, whether an appropriate statistic for the variable “time to first check” in survival studies is the mean time to relapse, as inferenced from a generalized linear model with an interval censored link function. The current example shows that, in addition, more sensitivity of testing is obtained with p-values of 0,054 versus 0,0001. Also, predicted probabilities of persistent remission or risk of relapse for different treatment modalities are given. This method is an important tool for analyzing such data.

8 Note

More background, theoretical and mathematical information of survival analyses is given in Statistics applied to clinical studies 5th edition, Chaps. 17, 31, and 64, Springer Heidelberg Germany, 2012, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html