© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_51

51. Loglinear Models, Logit Loglinear Models (445 Patients)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 
This chapter was previously partly published in “Machine learning in medicine a complete overview” as Chap. 39, Springer Heidelberg Germany, 2015.

1 General Purpose

Multinomial regression is adequate for identifying the main predictors of outcome categories, like levels of injury or quality of life (QOL). An alternative approach is logit loglinear modeling. It does not use continuous predictors on a case by case basis, but rather the weighted means of subgroups formed with the help of predictors. This approach may allow for relevant additional conclusions from your data.

2 Schematic Overview of Type of Data File

A211753_2_En_51_Figa_HTML.gif

3 Primary Scientific Question

Does logit loglinear modeling allow for relevant additional conclusions from your categorical data as compared to polytomous/multinomial regression?

4 Data Example

Qol
Gender
Married
Lifestyle
Age
2
1
0
0
55
2
1
1
1
32
1
1
1
0
27
3
0
1
0
77
1
1
1
0
34
1
1
0
1
35
2
1
1
1
57
2
1
1
1
57
1
0
0
0
35
2
1
1
0
42
3
0
1
0
30
1
0
1
1
34
age (years)
gender (0 = female)
married (0 = no)
lifestyle (0 = poor)
qol (quality of life levels, 1 = low, 3 = high)
The above table shows the data of the first 12 patients of a 445 patient data file of qol (quality of life) levels and patient characteristics. The characteristics are the predictor variables of the qol levels (the outcome variable). The entire data file is in extras.springer.com, and is entitled “chapter51loglinear”. We will first perform a traditional multinomial regression in order to test the linear relationship between the predictor levels and the chance (actually the odds, or to be precise logodds) of having one of the three qol levels. Start by opening SPSS, and entering the data file.

5 Multinomial Logistic Regression

For analysis the statistical model Multinomial Logistic Regression in the module Regression is required.
Command:
  • Analyze....Regression....Multinomial Logistic Regression....Dependent: enter “qol”.... Factor(s): enter “gender, married, lifestyle”....Covariate(s): enter “age”....click OK.
The underneath table shows the main results.
Parameter estimates
Qola
B
Std. error
Wald
df
Sig.
Exp(B)
95 % confidence interval for Exp (B)
Lower bound
Upper bound
Low
Intercept
28,027
2,539
121,826
1
,000
     
age
−,559
,047
143,158
1
,000
,572
,522
,626
[gender = 0]
,080
,508
,025
1
,875
1,083
,400
2,930
[gender = 1]
0b
.
.
0
.
.
.
.
[married = 0]
2,081
,541
14,784
1
,000
8,011
2,774
23,140
[married = 1]
0b
.
.
0
.
.
.
.
[lifestyle = 0]
−,801
,513
2,432
1
,119
,449
,164
1,228
[lifestyle = 1]
0b
.
.
0
.
.
.
.
Medium
Intercept
20,133
2,329
74,743
1
,000
     
age
−,355
,040
79,904
1
,000
,701
,649
,758
[gender = 0]
,306
,372
,674
1
,412
1,358
,654
2,817
[gender = 1]
0b
.
.
0
.
.
.
.
[married = 0]
,612
,394
2,406
1
,121
1,843
,851
3,992
[married = 1]
0b
.
.
0
.
.
.
.
[lifestyle = 0]
−,014
,382
,001
1
,972
,987
,466
2,088
[lifestyle = 1]
0b
.
.
0
.
.
.
.
aThe reference category is: high
bThis parameter is set to zero because it is redundant
The following conclusions are appropriate.
1.
The unmarried subjects have a greater chance of QOL level 1 than the married ones (the b-value is positive here).
 
2.
The higher the age, the less chance of having the low QOL levels 1 and 2 (the b-values (regression coefficients) are negative here). If you wish, you may also report the odds ratios (Exp (B) values) here.
 

6 Logit Loglinear Modeling

We will now perform a logit loglinear analysis. For analysis the statistical model Logit in the module Loglinear is required.
Command:
  • Analyze.... Loglinear....Logit....Dependent: enter “qol”....Factor(s): enter “gender, married, lifestyle”....Cell Covariate(s): enter: “age”....Model: Terms in Model: enter: “gender, married, lifestyle, age”....click Continue....click Options....mark Estimates....mark Adjusted residuals....mark normal probabilities for adjusted residuals....click Continue....click OK.
The table on page 306 shows the observed frequencies per cell, and the frequencies to be expected, if the predictors had no effect on the outcome.
Cell counts and residualsa,b
 
Observed
Expected
       
Gender
Married
Lifestyle
Qol
Count
%
Count
%
Residual
Standardized residual
Adjusted residual
Deviance
Male
Unmarried
Inactive
Low
7
23,3 %
9,111
30,4 %
−2,111
−,838
−1,125
−1,921
Medium
16
53,3 %
14,124
47,1 %
1,876
,686
,888
1,998
High
7
23,3 %
6,765
22,6 %
,235
,103
,127
,691
Active
Low
29
61,7 %
25,840
55,0 %
3,160
,927
2,018
2,587
Medium
5
10,6 %
10,087
21,5 %
−5,087
−1,807
−2,933
−2,649
High
13
27,7 %
11,074
23,6 %
1,926
,662
2,019
2,042
Married
Inactive
Low
9
11,0 %
10,636
13,0 %
−1,636
−,538
−,826
−1,734
Medium
41
50,0 %
43,454
53,0 %
−2,454
−,543
−1,062
−2,183
High
32
39,0 %
27,910
34,0 %
4,090
,953
2,006
2,958
Active
Low
15
23,8 %
14,413
22,9 %
,587
,176
,754
1,094
Medium
27
42,9 %
21,336
33,9 %
5,664
1,508
2,761
3,566
High
21
33,3 %
27,251
43,3 %
−6,251
−1,590
−2,868
−3,308
Female
Unmarried
Inactive
Low
12
26,1 %
11,119
24,2 %
,881
,303
,627
1,353
Medium
26
56,5 %
22,991
50,0 %
3,009
,887
1,601
2,529
High
8
17,4 %
11,890
25,8 %
−3,890
−1,310
−1,994
−2,518
Active
Low
18
54,5 %
19,930
60,4 %
−1,930
−,687
−,978
−1,915
Medium
6
18,2 %
5,799
17,6 %
,201
,092
,138
,639
High
9
27,3 %
7,271
22,0 %
1,729
,726
1,064
1,959
Married
Inactive
Low
15
18,5 %
12,134
15,0 %
2,866
,892
1,670
2,522
Medium
27
33,3 %
29,432
36,3 %
−2,432
−,562
−1,781
−2,158
High
39
48,1 %
39,434
48,7 %
−.434
−,097
−,358
−,929
Active
Low
16
25,4 %
17,817
28,3 %
−1,817
−,508
−1,123
−1,855
Medium
24
38,1 %
24,779
39,3 %
−,779
−,201
−,882
−1,238
High
23
36,5 %
20,404
32,4 %
2,596
,699
1,407
2,347
aModel: Multinomial Logit
bDesign: Constant + qol + qol* gender + qol* married + qol* lifestyle + qol* age
The underneath table shows the results of the statistical tests of the data.
Parameter estimatesa,b
Parameter
Estimate
Std. error
Z
Sig.
95 % confidence interval
Lower bound
Upper bound
Constant
[gender = 0]* [married = 0] * [lifestyle = 0]
−7,402c
         
[gender = 0]* [married = 0]* [lifestyle = 1]
−7,409c
         
[gender = 0]* [married = 1]* [lifestyle = 0]
−6,088c
         
[gender = 0]* [married = 1]* [lifestyle = 1]
−6,349c
         
[gender = 1]*[married = 0] * [lifestyle = 0]
−6,825c
         
[gender = 1]* [married = 0]* [lifestyle = 1]
−7,406c
         
[gender = 1]* [married = 1]* [lifestyle = 0]
−5,960c
         
[gender = 1]*[married = 1] * [lifestyle = 1]
−6,567c
         
[qol = 1]
5,332
8,845
,603
,547
−12,004
22,667
[qol = 2]
4,280
10,073
,425
,671
−15,463
24,022
[qol = 3]
0d
.
.
.
.
.
[qol = 1]* [gender = 0]
,389
,360
1,079
,280
−,317
1,095
[qol = 1]* [gender = 1]
0d
.
.
.
.
.
[qol = 2]* [gender = 0]
−,140
,265
−,528
,597
−,660
,380
[qol = 2]* [gender = 1]
0d
.
.
.
.
.
[qol = 3]* [gender = 0]
0d
.
.
.
.
.
[qol = 3]* [gender = 1]
0d
.
.
.
.
.
[qol = 1]* [married = 0]
1,132
,283
4,001
,000
,578
1,687
[qol = 1]* [married = 1]
0d
.
.
.
.
.
[qol = 2]* [married = 0]
−,078
,294
−,267
,790
−,655
,498
[qol = 2]* [married = 1]
0d
.
.
.
.
.
[qol = 3]* [married = 0]
0d
.
.
.
.
.
[qol = 3]* [married = 1]
0d
.
.
.
.
.
[qol = 1]* [lifestyle = 0]
−1,004
,311
−3,229
,001
−1,613
−,394
[qol = 1]* [lifestyle = 1]
0d
.
.
.
.
.
[qol = 2] * [lifestyle = 0]
,016
,271
,059
,953
−,515
,547
[qol = 2]* [lifestyle = 1]
0d
.
.
.
.
.
[qol = 3]* [lifestyle = 0]
0d
.
.
.
.
.
[qol = 3]* [lifestyle = 1]
0d
.
.
.
.
.
[qol = 1]* age
,116
,074
1,561
,119
−,030
,261
[qol = 2]* age
,114
,054
2,115
,034
,008
,219
[qol = 3]* age
,149
,138
1,075
,282
−,122
,419
aModel: Multinomial Logit
bDesign: Constant + qol + qol* gender + qol* married + qol* lifestyle + qol* age
cConstants are not parameters under the multinomial assumption. Therefore, their standard errors are not calculated
dThis parameter is set to zero because it is redundant
The following conclusions are appropriate.
1.
The unmarried subjects have a greater chance of QOL 1 (low QOL) than their married counterparts.
 
2.
The inactive lifestyle subjects have a greater chance of QOL 1 (low QOL) than their adequate-lifestyle counterparts.
 
3.
The higher the age the more chance of QOL 2 (medium level QOL), which is neither very good nor very bad, nut rather in-between (as you would expect).
 
We may conclude that the two procedures produce similar results, but the latter method provides some additional information about the lifestyle.

7 Conclusion

Multinomial regression is adequate for identifying the main predictors of outcome categories, like levels of injury or quality of life. An alternative approach is logit loglinear modeling. The latter method does not use continuous predictors on a case by case basis, but rather the weighted means of subgroups formed with the help of the discrete predictors. This approach allowed for relevant additional conclusions in the example given.

8 Note

More background, theoretical and mathematical information of polytomous/multinomial regression is given in the Chap.44. More information of loglinear modeling is in the Chaps. 24 and 52.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html