© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_37

37. Logistic Regression with a Continuous Predictor (55 Patients)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 

1 General Purpose

Logistic regression with a binary predictor and binary outcome variable can predict the effect of a better treatment on a better outcome (see previous chapter). If your predictor is continuous, like age, it can predict the odds of responding ( = ratio of responders/non responders per subgroup, e.g., per year).

2 Schematic Overview of Type of Data File

A211753_2_En_37_Figa_HTML.gif

3 Primary Scientific Question

In clinical research the outcome is often responding yes or no. If your predictor is continuous like age, body weight, health score etc, then logistic regression calculates whether the predictors have a significant effect on the odds of responding, and, in addition, it calculates the odds values to be interpreted as chance of responding for each year of age, kg of body weight and score level of health score.

4 Data Example

The example of Chap. 35 is used once more. In 55 hospitalized patients the risk of falling out of bed was assessed. The question to be answered was: is age an independent predictor of the odds or rather logodds to be interpreted as chance of “falloutofbed”. The first 10 patients of the 55 patient file is underneath.
Fall out of bed
Year of age
1,00
60,00
1,00
86,00
1,00
67,00
1,00
75,00
1,00
56,00
1,00
46,00
1,00
98,00
1,00
66,00
1,00
54,00
1,00
86,00
fall out of bed 1 = yes, 0 = no
The data file is in extras.springer.com, and is entitled “chapter35unpairedbinary”.
We will start by opening the data in SPSS.

5 Logistic Regression with a Continuous Predictor

For analysis the statistical model Binary Logistic Regression in the module Regression is required.
Command:
  • Analyze....Regression....Binary Logistic Regression....Dependent: falloutofbed.... Covariate: age....click OK.
Variables in the equation
 
B
S.E.
Wald
df
Sig.
Exp(B)
Step 1a
age
,106
,027
15,363
1
,000
1,112
Constant
−6,442
1,718
14,068
1
,000
,002
aVariable(s) entered on step 1: age
The correct conclusion is, that age is, indeed, a very significant predictor of the chance of falling out of bed, with a p-value of < 0.0001.

6 Using the Logistic Equation for Making Predictions

The logistic model makes use of the underneath equation (ln = natural logarithm).
$$ \ln\ \mathrm{o}\mathrm{d}\mathrm{s}=\mathrm{a}+\mathrm{b}\mathrm{x} $$
By replacing the values a and b with the respective intercept and regression coefficient, we can calculate the odds (“risk”) of falling out of bed for each age class.
$$ \ln\ \mathrm{odds}=-6,442+,106*\mathrm{age} $$
This would mean that for a patient 40 years old
$$ \begin{array}{ll} \ln\ \mathrm{odds}\hfill & =-6,442+,106*40\hfill \\ {}\hfill & =-2,202\hfill \\ {}\mathrm{odds}\hfill & =0,11.\hfill \end{array} $$
However, for somebody aged 60 it would mean
$$ \begin{array}{ll}\mathrm{In}\ \mathrm{odds}\hfill & =-6,442+,106*60\hfill \\ {}\hfill & =0,92.\hfill \end{array} $$

7 Conclusion

Logistic regression with a binary predictor and binary outcome variable can predict the effect of a better treatment on a better outcome. If your predictor is, however, continuous, like age, then the odds of responding can be predicted for multiple subgroups (odds = ratio of responders / non responders per subgroup of, e.g., 1 year).

8 Note

More background, theoretical, and mathematical information about logistic regression is given in Statistics applied to clinical studies 5th edition, Chaps. 17 and 65, Springer Heidelberg Germany, 2012, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html