© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_16

16. Multistage Regression (35 Patients)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 

1 General Purpose

The multistage regression assumes that an independent variable (x-variable) is problematic, meaning that it is somewhat uncertain. An additional variable can be argued to provide relevant information about the problematic variable, and is, therefore, called instrumental variable, and included in the analysis.

2 Schematic Overview of Type of Data

A211753_2_En_16_Figa_HTML.gif

3 Primary Scientific Question

Is multistage regression better for analyzing outcome studies with multiple predictors than multiple linear regression.

4 Data Example

The effects of counseling frequencies and non-compliance (pills not used) on the efficacy of a novel laxative drug is studied in 35 patients. The first 10 patients of the data file is given below.
Pat no
Efficacy of new laxative (stools/month)
Pills not used (n)
Counseling (n)
1
24
25
8
2
30
30
13
3
25
25
15
4
35
31
14
5
39
36
9
6
30
33
10
7
27
22
8
8
14
18
5
9
39
14
13
10
42
30
15
The entire data file is in extras.springer.com, and is entitled “chapter16multistageregression”. Start by opening the data file in SPSS. We will first perform a multiple regression, and then a multistep regression.

5 Traditional Multiple Linear Regression

For analysis the model Linear in the module Regression is required.
Command:
  • Analyze....Regression....Linear....Dependent: ther eff....Independent(s): counseling, non-compliance....click OK.
Coefficientsa
Model
Unstandardized coefficients
Standardized coefficients
t
Sig.
B
Std. error
Beta
1
(Constant)
2,270
4,823
 
,471
,641
Counseling
1,876
,290
,721
6,469
,000
Non-compliance
,285
,167
,190
1,705
,098
aDependent Variable: ther eff
The above table shows the results of a linear regression assessing (1) the effects of counseling and non-compliance on therapeutic efficacy.
Command:
  • Analyze....Regression....Linear....Dependent: counseling…Independent(s): non-compliance....click OK.
Coefficientsa
Model
Unstandardized coefficients
Standardized coefficients
t
Sig.
B
Std. error
Beta
1
(Constant)
4,228
2,800
 
1,510
,141
Non-compliance
,220
,093
,382
2,373
,024
aDependent Variable: counseling
The above table give the effect of non-compliance on counseling.
With p = 0,10 as cut-off p-value for statistical significance all the effects above are statistically significant. Non-compliance is a significant predictor of counseling, and at the same time a significant predictor of therapeutic efficacy at p = 0,024. This would mean that non-compliance works two ways: it predicts therapeutic efficacy directly and indirectly through counseling. However, the indirect way is not taken into account in the usual one step linear regression. An adequate approach for assessing both ways simultaneously is path statistics.

6 Multistage Regression

Multistage regression, otherwise called path analysis or path statistics, uses add-up sums of regression coefficients for better estimation of multiple step relationships. Because regression coefficients have the same unit as their variable, they cannot be added up unless they are standardized by dividing them by their own variances. SPSS routinely provides the standardized regression coefficients, otherwise called path statistics, in its regression tables as shown above. The underneath figure gives a path diagram of the data.
A211753_2_En_16_Figb_HTML.gif
The standardized regression coefficients are added to the arrows. Single path analysis gives a standardized regression coefficient of 0.19. This underestimates the real effect of non-compliance. Two step path analysis is more realistic and shows that the add-up path statistic is larger and equals
$$ 0.19+0.38\times 0.72=0.46 $$
The two-path statistic of 0.46 is a lot better than the single path statistic of 0.19 with an increase of 60 %.

7 Alternative Analysis: Two Stage Least Square (2LS) Method

Instead of path analysis the two stage least square (2LS) method is possible and is available in SPSS. It works as follows. First, a simple regression analysis with counseling as outcome and non-compliance as predictor is performed. Then the outcome values of the regression equation are used as predictor of therapeutic efficacy. For analysis the statistical model 2 Stage Least Squares in the module Regression is required.
Command:
  • Analyze….Regression….2 Stage Least Squares….Dependent: stool…. Explanatory: non-compliance….Instrumental:counseling ….mark: include constant in equation....click OK.
Model description
 
Type of variable
Equation 1
Stool
Dependent
Noncompliance
Predictor
Counseling
Instrumental
MOD_3
ANOVA
 
Sum of squares
df
Mean square
F
Sig.
Equation 1
Regression
1408,040
1
1408,040
4,429
,043
Residual
10490,322
33
317,889
   
Total
11898,362
34
     
Coefficients
 
Unstandardized coefficients
Beta
t
Sig.
B
Std. error
Equation 1
(Constant)
−49,778
37,634
 
−1,323
,195
Noncompliance
2,675
1,271
1,753
2,105
,043
The above tables show the results of the 2LS method. As expected the final p-value of the effect of non-compliance on stool is smaller than that of the traditional linear regression with p-values of 0,043 instead 0,098.

8 Conclusion

Multistage regression methods often produce better estimations of multi-step relationships than standard linear regression methods do. Examples are given.

9 Note

More background, theoretical and mathematical information of multistep regression is given in Statistics applied to clinical studies 5th edition, Chap. 20, Springer Heidelberg Germany, 2012, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html