© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_29

29. Robust Testing (33 Patients)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 

1 General Purpose

Robust tests are tests that can handle the inclusion into a data file of some outliers without largely changing the overall test results. The following robust tests are available.
1.
Z-test for medians and median absolute deviations (MADs).
 
2.
Z-test for Winsorized variances.
 
3.
Mood’s test.
 
4.
Z-test for M-estimators with bootstrap standard errors.
 
The first three can be performed on a pocket calculator and are reviewed in Statistics on a Pocket Calculator Part 2, Chapter 8, Springer New York, 2011, from the same authors. The fourth robust test is reviewed in this chapter.

2 Schematic Overview of Type of Data File

A211753_2_En_29_Figa_HTML.gif

3 Primary Scientific Question

Is robust testing more sensitive than standard testing of imperfect data.

4 Data Example

The underneath study assesses whether physiotherapy reduces frailty. Frailty score improvements after physiotherapy are measured. The data file is underneath.
Frailty score improvements after physiotherapy
A211753_2_En_29_Figb_HTML.gif
The above data give the first 10 patients, the entire data file is in “chapter29robusttesting”, and is in extras.springer.com. First, we will try and make a histogram of the data.

5 Data Histogram Graph

Command:
  • Graph….Legacy Dialogs….Histogram….Variable: frailty score improvement….Mark: Display normal Curve….click OK.
A211753_2_En_29_Figc_HTML.gif
The above graph suggests the presence of some central tendency: the values between 3,00 and 5,00 are observed more frequently than the rest. However, the Gaussian curve calculated from the mean and standard deviation does not fit the data very well with outliers on either side. Next, we will perform a one sample t-test to see if the calculated mean is significantly different 0. For analysis the statistical model One Sample T-Test in the module Compare Means is required.
Command:
  • Analyze….Compare Meams….One Sample T-Test….Test Variable: frailty score improvement….click OK.
One-sample test
 
Test value = 0
       
95 % confidence interval of the difference
t
df
Sig. (2-tailed)
Mean difference
Lower
Upper
VAR00001
1,895
32
,067
1,45455
−,1090
3,0181
The above table shows that the t-value based on Gaussian-like t-curves is not significantly different from 0, p = 0,067.

6 Robust Testing

M-estimators is a general term for maximum likelihood estimators (MLEs), which can be considered as central values for different types of sampling distributions.
Huber (Proc 5th Berkeley Symp Stat 1967) described an approach to estimate MLEs with excellent performance, and this method is, currently, often applied. The Huber maximum likelihood estimator is calculated from the underneath equation (MAD = median absolute deviation, * = sign of multiplication)
$$ \frac{{\displaystyle \sum 0.6745\kern0.28em *\kern0.28em \left(\mathrm{x}-\mathrm{median}\right)}}{\mathrm{MAD}} $$
Command:
  • Analyze.…Descriptives….Explore: enter variable into box dependent list….Statistics: mark M-estimators….click OK.
In the output sheets the underneath result is given.
$$ \begin{array}{ll}\mathrm{Huber}'\mathrm{s}\ \mathrm{M}\hbox{-} \mathrm{estimator}\hfill & =2,4011\hfill \\ {}\mathrm{Huber}'\mathrm{s}\ \mathrm{standard}\ \mathrm{error}\hfill & =\mathrm{not}\ \mathrm{given}.\hfill \end{array} $$
Usually, the 2nd derivative of the M-estimator function is used to find the standard error. However, the problem with the second derivative procedure in practice is that it requires very large data files in order to be accurate. Instead of an inaccurate estimate of the standard error, a bootstrap standard error can be calculated. This is not provided in SPSS. Bootstrapping is a data based simulation process for statistical inference. The basic idea is sampling with replacement in order to produce random samples from the original data. Standard errors are calculated from the 95 % confidence intervals of the random samples [95 % confidence interval = (central value ± 2 standard errors)]. We will use “R bootstrap Plot – Central Tendency”, available on the Internet as a free calculator tool.
  • Enter your data.
  • Then command: compute.
  • The bootstrap standard error of the median is used.
  • Bootstrap standard error = 0,8619.
  • The z-test is used.
  • z-value = Huber’s M-estimator/bootstrap standard error
  • z-value = 2,4011/ 0,8619 = 2,7858
  • p-value = 0,005
Unlike the one sample t-test, the M-estimator with bootstraps produces a highly significant effect. Frailty scores can, obviously, be improved by physiotherapy.

7 Conclusion

Robust tests are wonderful for imperfect data, because they often produce statistically significant results, when the standard tests do not.

8 Note

The robust tests that can be performed on a pocket calculator, are reviewed in Statistics on a Pocket Calculator Part 2, Chapter 8, Springer New York, 2011, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html