© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_7

7. Automatic Linear Regression (35 Patients)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 
This chapter was previously partly published in “Machine learning in medicine a complete overview” in the Chap. 31, 2015.

1 General Purpose

Automatic linear regression is in the Statistics Base add-on module SPSS version 19 and up. X-variables are automatically transformed in order to provide an improved data fit, and SPSS uses rescaling of time and other measurement values, outlier trimming, category merging and other methods for the purpose.

2 Schematic Overview of Type of Data File

A211753_2_En_7_Figa_HTML.gif

3 Specific Scientific Question

Can automatic rescaling and outlier trimming as available in SPSS be used to maximize linear relationships in multiple linear regression models.

4 Data Example

In a clinical crossover trial an old laxative is tested against a new one. Numbers of stools per month is the outcome. The old laxative and the patients’ age are the predictor variables. Does automatic linear regression provide better statistics of these data than traditional multiple linear regression does.
Outcome
Predictor
Age category
Patient id
Predicted values
24,00
8,00
2,00
1,00
26,41
30,00
13,00
2,00
2,00
27,46
25,00
15,00
2,00
3,00
27,87
35,00
10,00
3,00
4,00
38,02
39,00
9,00
3,00
5,00
37,81
30,00
10,00
3,00
6,00
38,02
27,00
8,00
1,00
7,00
26,41
14,00
5,00
1,00
8,00
25,78
39,00
13,00
1,00
9,00
27,46
42,00
15,00
1,00
10,00
27,87
Outcome = new laxative
Predictor = old laxative
Only the first 10 patients of the 35 patients are shown above. The entire file is in extras.springer.com and is entitled “chapter7automaticlinreg”. We will first perform a standard multiple linear regression. For analysis the module Regression is required. It consists of at least 10 different statistical models, such as linear modeling, curve estimation, binary logistic regression, ordinal regression etc. Here we will simply use the linear model.

5 Standard Multiple Linear Regression

Command:
  • Analyze….Regression….Linear….Dependent: enter newtreat….Independent: enter oldtreat and agecategories….click OK.
Model summary
Model
R
R square
Adjusted R square
Std. Error of the estimate
1
,429a
,184
,133
9,28255
aPredictors: (Constant), oldtreat, agecategories
ANOVAa
Model
Sum of squares
df
Mean square
F
Sig.
1
Regression
622,869
2
311,435
3,614
,038b
Residual
2757,302
32
86,166
   
Total
3380,171
34
     
aDependent variable: newtreat
bPredictors: (Constant), oldtreat, agecategories
Coefficients a
Model
Unstandardized coefficients
Standardized coefficients
t
Sig.
B
Std. Error
Beta
1
(Constant)
20,513
5,137
 
3,993
,000
Agecategories
3,908
2,329
,268
1,678
,103
Oldtreat
,135
,065
,331
2,070
,047
aDependent variable: newtreat

6 Automatic Linear Modeling

The same commands are given, but, instead of the model Linear, click the model Automatic Linear Modeling. The underneath interactive output sheets are given.
Automatic data preparationTarget:newtreat
A211753_2_En_7_Tab5_HTML.gif
An interactive graph shows the predictors as lines with thicknesses corresponding to their predictive power and the outcome in the form of a histogram with its best fit Gaussian pattern. Both of the predictors are now statistically very significant with a correlation coefficient at p < 0,0001, and regression coefficients at p-values of respectively 0,001 and 0,007.
Coefficients Target: newtreat
A211753_2_En_7_Figb_HTML.gif
Coefficients Target: newtreat
A211753_2_En_7_Tab6_HTML.gif
Effects Target: newtreat
A211753_2_En_7_Tab7_HTML.gif
Returning to the data view of the original data file, we now observe that SPSS has provided a novel variable with values for the new treatment as predicted from statistical model employed. They are pretty close to the real outcome values.
Outcome
Predictor
Age category
Patient id
Predicted values
24,00
8,00
2,00
1,00
26,41
30,00
13,00
2,00
2,00
27,46
25,00
15,00
2,00
3,00
27,87
35,00
10,00
3,00
4,00
38,02
39,00
9,00
3,00
5,00
37,81
30,00
10,00
3,00
6,00
38,02
27,00
8,00
1,00
7,00
26,41
14,00
5,00
1,00
8,00
25,78
39,00
13,00
1,00
9,00
27,46
42,00
15,00
1,00
10,00
27,87
Outcome = new laxative
Predictor = old laxative

7 The Computer Teaches Itself to Make Predictions

The modeled regression coefficients are used to make predictions about future data using the Scoring Wizard and an XML (eXtended Markup Language) file (winRAR ZIP file) of the data file. Like random intercept models (see Chap. 45) and other generalized mixed linear models (see Chap. 12), automatic linear regression includes the possibility to make XML files from the analysis, that can subsequently be used for making outcome predictions in future patients. SPSS uses here software called winRAR ZIP files that are “shareware”. This means that you pay a small fee and be registered if you wish to use it. Note that winRAR ZIP files have an archive file format consistent of compressed data used by Microsoft since 2006 for the purpose of filing XML files. They are only employable for a limited period of time like e.g. 40 days. Below the data of 9 future patients are given.
Newtreat
Oldtreat
Agecategory
 
4,00
1,00
 
13,00
1,00
 
15,00
1,00
 
15,00
1,00
 
11,00
2,00
 
80,00
2,00
 
10,00
3,00
 
18,00
2,00
 
13,00
2,00
Enter the above data in a novel data file and command:
  • Utilities….click Scoring Wizard….click Browse….Open the appropriate folder with the XML file entitled "exportautomaticlinreg"….click on the latter and click Select….in Scoring Wizard double-click Next….mark Predicted Value….click Finish.
Newtreat
Oldtreat
Agecategory
Predicted new treat
 
4,00
1,00
25,58
 
13,00
1,00
27,46
 
15,00
1,00
27,87
 
15,00
1,00
27,87
 
11,00
2,00
27,04
 
80,00
2,00
41,46
 
10,00
3,00
38,02
 
18,00
2,00
28,50
 
13,00
2,00
27,46
In the data file SPSS has provided the novel variable as requested. The first patient with only 4 stools per month on the old laxative and young of age will have over 25 stools on the new laxative.

8 Conclusion

SPSS’ automatic linear regression can be helpful to obtain an improved precision of analysis of clinical trials and provided in the example given better statistics than traditional multiple linear regression did.

9 Note

More background theoretical and mathematical information of linear regression is available in Statistics applied to clinical studies 5th edition, Chap. 14, Linear regression basic approach, and Chap. 15, Linear regression for assessing precision confounding interaction, Chap. 18, Regression modeling for improved precision, pp 161–176, 177–185, 219–225, Springer Heidelberg Germany, 2012, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html