© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_10

10. Repeated Measures Analysis of Variance Plus Predictors (10 Patients)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 

1 General Purpose

Repeated-measures-analysis of variance (ANOVA) (Chap. 9) allows for more than two continuous outcome variables, but does not include predictor variables. In this chapter repeated-measures ANOVA with predictor variables is reviewed. In addition to testing differences between the paired observations, it can simultaneously test the effects of the predictors on the outcome variables.

2 Schematic Overview of Type of Data File

A211753_2_En_10_Figa_HTML.gif

3 Primary Scientific Question

Do three different pills produce significantly different clinical outcome effects. Does the predictor have a significant effect on the outcomes.

4 Data Example

In a crossover study of three different sleeping pills the significance of difference between hours of sleep between the different treatments was assessed.
Hours of sleep after sleeping pill
age (years)
a
b
c
 
6,10
6,80
6,20
55,00
7,00
7,00
7,90
65,00
8,20
9,00
6,90
84,00
7,60
7,80
6,70
56,00
6,50
6,60
6,30
44,00
8,40
8,00
6,40
85,00
6,90
7,30
6,20
53,00
6,70
7,00
6,10
65,00
7,40
7,50
6,80
66,00
5,80
5,80
6,30
63,00
6,20
6,70
6,10
55,00
6,90
6,00
7,80
65,00
8,10
8,90
6,80
83,00
7,50
7,80
6,80
56,00
6,40
6,50
6,20
44,00
8,40
7,90
6,30
86,00
6,90
7,40
6,20
53,00
6,60
7,10
6,20
65,00
7,30
6,90
6,90
65,00
5,90
5,90
6,40
62,00

5 Analysis, Repeated Measures ANOVA

The data file is in extras.springer.com, and is entitled “chapter10repeatedmeasuresanova+predictor”. Open the data file in SPSS. For analysis the statistical model Repeated Measures in the module General Linear Model is required.
Command:
  • Analyze....General Linear Model....Repeated Measures....Repeated Measures Define Factors....Within-subject Factor name: treat....Number of Levels: 3....click Add....click Define: Within-Subjects Variables (treat): enter treatmenta, treatmentb, treatmentc....Between-Subjects Factors: enter "age"....click OK.
The output sheets show the underneath tables.
Mauchly’s test of sphericityaMeasure:MEASURE_1
Within subjects effect
Mauchly’s W
Approx Chi-Square
df
Sig.
Epsilonb
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
treat
,297
8,502
2
,014
,587
1,000
,500
Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix
aDesign: Intercept + age. Within subjects design: treat
bMaybe used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the tests of within-subjects effects table
Tests of within-subjects effectsMeasure:MEASURE_1
Source
Type III sum of squares
df
Mean square
F
Sig.
treat
Sphericity assumed
6,070
2
3,035
15,981
,000
Greenhouse-Geisser
6,070
1,174
5,169
15,981
,002
Huynh-Feldt
6,070
2,000
3,035
15,981
,000
Lower-bound
6,070
1,000
6,070
15,981
,004
treat*age
Sphericity assumed
8,797
22
,400
2,105
,065
Greenhouse-Geisser
8,797
12,917
,681
2,105
,129
Huynh-Feldt
8,797
22,000
,400
2,105
,065
Lower-bound
8,797
11,000
,800
2,105
,150
Error(treat)
Sphericity assumed
3,039
16
,190
Greenhouse-Geisser
3,039
9,394
,323
Huynh-Feldt
3,039
16,000
,190
Lower-bound
3,039
8,000
,380
Tests of within-subjects contrastsMeasure:MEASURE_1
Source
treat
Type III sum of squares
df
Mean square
F
Sig.
treat
Linear
3,409
1
3,409
23,633
,001
Quadratic
2,661
1
2,661
11,296
,010
treat*age
Linear
5,349
11
,486
3,371
,048
Quadratic
3,448
11
,313
1,331
,350
Error(treat)
Linear
1,154
8
,144
   
Quadratic
1,885
8
,236
   
Tests of between-subjects effectsMeasure:MEASURE_1Transformed Variable:Average
Source
Type III sum of squares
df
Mean square
F
Sig.
Intercept
2312,388
1
2312,388
17885,053
,000
age
19,245
11
1,750
13,532
,001
Error
1,034
8
,129
   
The repeated-measures ANOVA tests whether a significant difference exists between three treatments. An important criterion for validity of the test is the presence of sphericity in the data, meaning that all data come from Gaussian distributions. It appears from the above upper table that this is not true, because based on this table we are unable to reject the null-hypothesis of non-sphericity. This means that an ANOVA test corrected for non-sphericity has to be performed. There are three possibilities: the Greenhouse, Huynh, and Lower-bound methods.
All of them produce virtually the same p-values, between 0,000 and 0,004. This means that there is a very significant different between the magnitudes of the three outcomes. The same table also shows that there is a tendency to interaction between the three treatments and age (p = 0,065–0,150). The tests of within-subjects contrasts confirms the appropriateness of the linear model: the linear regressions produce better p-values than did the quadratic regressions. The tests of between-subjects table shows, that age is a very significant predictor of the outcomes a p = 0,001. The elderly sleep better on the pills a and b, in the younger there is no difference between the hours of sleep between the three pills.
Like with the repeated-measures without predictors (Chap. 9), Bonferroni-adjusted post-hoc tests have to be performed in order to find out which of the treatments performs the best, and what is the precise effect of age on separate outcomes (more information about the adjustments for multiple testing including the Bonferroni procedure is given in the textbook “Statistics applied to clinical trials”, 5th edition, the Chaps. 8 and 9, 2012, Springer Heidelberg Germany, from the same authors).

6 Conclusion

In a crossover study of multiple different treatment modalities plus predictor variables the significance of difference between the outcomes of the different treatments can be tested simultaneously with the overall effects of the predictor variables. The test results are overall results, and post-hoc tests must be performed in order to find out, if differences exist between treatment 1 and 2, 2 and 3, or 1 and 3, and what effects the predictors have on the separate outcome measures. This rapidly gets rather complex, and some would prefer to skip the overall assessments, and start with Bonferroni adjusted one by one tests right away.

7 Note

More background, theoretical and mathematical information of repeated measures ANOVA is given in Statistics applied to clinical studies 5th edition, Chap. 2, Springer Heidelberg Germany, 2012, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html