© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_47

47. Poisson Regression for Binary Outcomes (52 Patients)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 

1 General Purpose

Poisson regression cannot only be used for counted rates but also for binary outcome variables. Poisson regression of binary outcome data is different from logistic regression, because it uses a log instead of logit (log odds) transformed dependent variable. It tends to provide better statistics.

2 Schematic Overview of Type of Data File

A211753_2_En_47_Figa_HTML.gif

3 Primary Scientific Question

Can Poisson regression be used to estimate the presence of an illness. Presence means a rate of 1, absence means a rate of 0. If each patient is measured within the same period of time, no weighting variable has to be added to the model. Rates of 0 or 1, do, after all, do exist in practice. We will see how this approach performs as compared to the logistic regression, traditionally, used for binary outcomes. The data file is below.

4 Data Example

In 52 patients with parallel-groups of two different treatments the presence or not of torsades de pointes was measured. The first ten patients of the data file given below. The entire data file is entitled chapter47poissonbinary, and is in extras.springer.com. We will start by opening the data file in SPSS.
Treat
Presence of torsade de pointes.
,00
1,00
,00
1,00
,00
1,00
,00
1,00
,00
1,00
,00
1,00
,00
1,00
,00
1,00
,00
1,00
,00
1,00

5 Data Analysis, Binary Logistic Regression

First, we will perform a traditional binary logistic regression with torsade de pointes as outcome and treatment modality as predictor.
For analysis the statistical model Binary Logistic Regression in the module Regression is required.
Command:
  • Analyze….Regression….Binary Logistic….Dependent: torsade….Covariates: treatment….click OK.
Variables in the equation
 
B
S.E.
Wald
df
Sig.
Exp(B)
Step 1a
VAR00001
1,224
,626
3,819
1
,051
3,400
Constant
−,125
,354
,125
1
,724
,882
aVariable(s) entered on step 1: VAR00001
The above table shows that the treatment is not statistically significant. A Poisson regression will performed subsequently.

6 Data Analysis, Poisson Regression

For analysis the module Generalized Linear Models is required. It consists of two submodules: Generalized Linear Models and Generalized Estimation Models. The first submodule covers many statistical models like gamma regression (Chap. 30), Tweedie regression (Chap. 31), Poisson regression (Chaps. 21 and the current chapter), and the analysis of data files with both paired continuous outcomes and predictors (Chap. 3). The second is for analyzing paired binary outcomes (Chap. 42).
Command:
  • Analyze....Generalized Linear Models....Generalized Linear Models ….mark Custom….Distribution: Poisson ….Link Function: Log….Response: Dependent Variable: torsade…. Predictors: Factors: treat....click Model....click Main Effect: enter “treat”…..click Estimation: mark Robust Tests….click OK.
Parameter estimates
     
95 % Wald confidence interval
Hypothesis test
Parameter
B
Std. error
Lower
Upper
Wald chi-square
df
Sig.
(Intercept)
−,288
,1291
−.541
−,035
4,966
1
,026
[VAR00001=,00]
−,470
,2282
−,917
−,023
4,241
1
,039
[VAR00001 = 1,00]
0a
           
(Scale)
1b
           
Dependent Variable: torsade
Model: (Intercept), VAR00001
aSet to zero because this parameter is redundant
bFixed at the displayed value
The above table shows the results of the Poisson regression. The predictor treatment modality is statistically significant at p = 0.039. According to the Poisson model the treatment modality is a significant predictor of torsades de pointes.

7 Graphical Analysis

We will check with a 3-dimensional graph of the data if this result is in agreement with the data as observed.
Command:
  • Graphs….Legacy Dialog….3-D Bar: X-Axis mark: Groups of Cases, Z-Axis mark: Groups of Cases…Define 3-D Bar: X Category Axis: treatment, Z Category Axis: torsade….OK.
A211753_2_En_47_Figb_HTML.gif
The above graph shows that in the 0-treatment (placebo) group the number of patients with torsades de pointe is virtually equal to that of the patients without. However, in the 1-treatment group the number is considerably smaller. The treatment seems to be efficacious.

8 Conclusion

Poisson regression is different from linear en logistic regression, because it uses a log transformed dependent variable. For the analysis of yes/no rates Poisson regression is very sensitive and probably better than standard regression methods. The methodology is explained.

9 Note

More background, theoretical and mathematical information about Poisson regression is given in Statistics applied to clinical studies 5th edition, Chap. 23, Springer Heidelberg Germany, 2012, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html