© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_49

49. Probit Regression, Binary Data as Response Rates (14 Tests)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 

1 General Purpose

Probit regression is for estimating the effect of predictors on yes/no outcomes. If your predictor is multiple pharmacological treatment dosages, then probit regression may be more convenient than logistic regression, because your results will be reported in the form of response rates instead of odds ratios. The dependent variable of the two methods log odds (otherwise called logit) and log prob (otherwise called probit) are closely related to one another. It can be shown that the log odds of responding ≈ (π/√3) × log probability of responding (see Chap. 7, Machine learning in medicine part three, Probit regression, pp 63–68, 2013, Springer Heidelberg Germany, from the same authors).

2 Schematic Overview of Type of Data File

A211753_2_En_49_Figa_HTML.gif

3 Primary Scientific Question

This chapter will assess whether probit regression is able to test whether different predictor levels can adequately predict response rates.

4 Data Example

In 14 test sessions the effect measured as the numbers of mosquitos gone after administration of different dosages of a chemical repellent was assessed. The first seven sessions are in the underneath table. The entire data file is entitled “chapter49probit”, and is in extras.springer.com. Start by opening the data file in SPSS statistical software.
Mosquitos gone
n mosquitos
Repellent nonchem
Repellent chem
1000
18000
1
,02
1000
18500
1
,03
3500
19500
1
,03
4500
18000
1
,04
9500
16500
1
,07
17000
22500
1
,09
20500
24000
1
,10

5 Simple Probit Regression

For analysis the statistical model Probit Regression in the module Regression is required.
Command:
  • Analyze....Regression....Probit Regression....Response Frequency: enter “mosquitos gone”....Total Observed: enter “n mosquitos”....Covariate(s): enter “chemical”....Transform: select “natural log”....click OK.
Chi-square tests
 
Chi-square
dfa
Sig.
PROBIT
Pearson goodness-of-fit test
7706,816
12
,000b
aStatistics based on individual cases differ from statistics based on aggregated cases
bSince the significance level is less than ,150, a heterogeneity factor is used in the calculation of confidence limits
In the output sheets the above table shows that the goodness of fit tests of the data is significant, and, thus, the data do not fit the probit model very well. However, SPSS is going to produce a heterogeneity correction factor, and we can proceed. The underneath shows that chemical dilution levels are a very significant predictor of proportions of mosquitos gone.
Parameter estimates
Parameter
       
95 % confidence interval
Estimate
Std. error
Z
Sig.
Lower bound
Upper bound
PROBITa
chemical (dilution)
1,649
,006
286,098
,000
1,638
1,660
Intercept
4,489
,017
267,094
,000
4,472
4,506
aPROBIT model: PROBIT(p) = Intercept + BX (Covariates X are transformed using the base 2.718 logarithm)
Cell counts and residuals
 
Number
Chemical (dilution)
Number of subjects
Observed responses
Expected responses
Residual
Probability
PROBIT
1
−3,912
18000
1000
448,194
551,806
,025
2
−3,624
18500
1000
1266,672
−266,672
,068
3
−3,401
19500
3500
2564,259
935,741
,132
4
−3,124
18000
4500
4574,575
−74,575
,254
5
−2,708
16500
9500
8405,866
1094,134
,509
6
−2,430
22500
17000
15410,676
1589,324
,685
7
−2,303
24000
20500
18134,992
2365,008
,756
8
−3,912
22500
500
560,243
−60,243
,025
9
−3,624
18500
1500
1266,672
233,328
,068
10
−3,401
19000
1000
2498,508
−1498,508
,132
11
−3,124
20000
5000
5082,861
−82,861
,254
12
−2,708
22000
10000
11207,821
−1207,821
,509
13
−2,430
16500
8000
11301,162
−3301,162
,685
14
−2,303
18500
13500
13979,056
−479,056
,756
The above table shows that according to chi-square tests the differences between observed and expected proportions of mosquitos gone is several times statistically significant.
It does, therefore, make sense to make some inferences using the underneath confidence limits table.
Confidence limits
 
Probability
95 % confidence limits for chemical (dilution)
95 % confidence limits for log(chemical (dilution))a
Estimate
Lower bound
Upper bound
Estimate
Lower bound
Upper bound
PROBITb
,010
,016
,012
,020
−4,133
−4,453
−3,911
,020
,019
,014
,023
−3,968
−4,250
−3,770
,030
,021
,016
,025
−3,863
−4,122
−3,680
,040
,023
,018
,027
−3,784
−4,026
−3,612
,050
,024
,019
,029
−3,720
−3,949
−3,557
,060
,026
,021
,030
−3,665
−3,882
−3,509
,070
,027
,022
,031
−3,617
−3,825
−3.468
,080
,028
,023
,032
−3,574
−3,773
−3,430
,090
,029
,024
,034
−3,535
−3,726
−3,396
,100
,030
,025
,035
−3,500
−3,683
−3,365
,150
,035
,030
,039
−3,351
−3,506
−3,232
,200
,039
,034
,044
−3,233
−3,368
−3,125
,250
,044
,039
,048
−3,131
−3,252
−3,031
,300
,048
,043
,053
−3,040
−3,150
−2,943
,350
,052
,047
,057
−2,956
−3,059
−2,860
,400
,056
,051
,062
−2,876
−2,974
−2,778
,450
,061
,055
,067
−2,799
−2,895
−2,697
,500
,066
,060
,073
−2,722
−2,819
−2,614
,550
,071
,064
,080
−2,646
−2,745
−2,529
,600
,077
,069
,087
−2,569
−2,672
−2/442
,650
,083
,074
,095
−2,489
−2,598
−2,349
,700
,090
,080
,105
−2,404
−2,522
−2,251
,750
,099
,087
,117
−2,313
−2,441
−2,143
,800
,109
,095
,132
−2,212
−2,351
−2,022
,850
,123
,106
,153
−2,094
−2,248
−1,879
,900
,143
,120
,183
−1,945
−2,120
−1,699
,910
,148
,124
,191
−1,909
−2,089
−1,655
,920
,154
,128
,200
−1,870
−2,055
−1,608
,930
,161
,133
,211
−1,827
−2,018
−1,556
,940
,169
,138
,224
−1,780
−1,977
−1,497
,950
,178
,145
,239
−1,725
−1,931
−1,430
,960
,190
,153
,259
−1,661
−1,876
−1,352
,970
,206
,164
,285
−1,582
−1,809
−1,255
,980
,228
,179
,324
−1,477
−1,719
−1,126
,990
,269
,206
,397
−1,312
−1,579
−,923
aLogarithm base = 2.718
bA heterogeneity factor is used
E.g., one might conclude that a 0,143 dilution of the chemical repellent causes 0,900 (=90 %) of the mosquitos to have gone. And 0,066 dilution would mean that 0,500 (=50 %) of the mosquitos disappeared.

6 Multiple Probit Regression

For analysis again the statistical model Probit regression in the module Regression is required.
Like multiple logistic regression using multiple predictors, probit regression can also be applied with multiple predictors. We will add as second predictor to the above example the nonchemical repellents ultrasound (=1) and burning candles (=2) (see uppermost table of this chapter).
Command:
  • Analyze....Regression....Probit Regression....Response Frequency: enter “mosquitos gone”....Total Observed: enter “n mosquitos”....Covariate(s): enter “chemical, nonchemical”....Transform: select “natural log”....click OK.
Chi-square tests
 
Chi-square
dfa
Sig.
PROBIT
Pearson goodness-of-fit test
3863,489
11
,000b
aStatistics based on individual cases differ from statistics based on aggregated cases
bSince the significance level is less than ,150, a heterogeneity factor is used in the calculation of confidence limits
Again, the goodness of fit is not what it should be, but SPSS adds a correction factor for heterogeneity. The underneath table shows the regression coefficients for the multiple model. The nonchemical repellents have significantly different effects on the outcome.
Parameter estimates
Parameter
Estimate
Std. error
Z
Sig.
95 % confidence interval
Lower bound
Upper bound
PROBITa
Chemical (dilution)
1,654
,006
284,386
,000
1,643
1,665
Interceptb
Ultrasound
4,678
,017
269,650
,000
4,661
4,696
 
Burning candles
4,321
,017
253,076
,000
4,304
4,338
aPROBIT model: PROBIT(p) = Intercept + BX (Covariates X are transformed using the base 2.718 logarithm.)
bCorresponds to the grouping variable repellentnonchemical
Cell counts and residuals
 
Number
Repellentnonchemical
Chemical (dilution)
Number of subjects
Observed responses
Expected responses
Residual
Probability
PROBIT
1
1
−3,912
18000
1000
658,233
341,767
,037
2
1
−3,624
18500
1000
1740,139
−740,139
,094
3
1
−3,401
19500
3500
3350,108
149,892
,172
4
1
−3,124
18000
4500
5630,750
−1130,750
,313
5
1
−2,708
16500
9500
9553,811
−53,811
,579
6
1
−2,430
22500
17000
16760,668
239,332
,745
7
1
−2,303
24000
20500
19388,521
1111,479
,808
8
2
−3,912
22500
500
355,534
144,466
,016
9
2
−3,624
18500
1500
871,485
628,515
,047
10
2
−3,401
19000
1000
1824,614
−824,614
,096
11
2
−3,124
20000
5000
3979,458
1020,542
,199
12
2
−2,708
22000
10000
9618,701
381,299
,437
13
2
−2,430
16500
8000
10202,854
−2202,854
,618
14
2
−2,303
18500
13500
12873,848
626,152
,696
In the Cell Counts table on page 292, it is shown that according to the chi-square tests the differences of observed and expected proportions of mosquitos gone were statistically significant several times. The table on pages 293–295 gives interesting results. E.g., a 0,128 dilution of the chemical repellent causes 0,900 (=90 %) of the mosquitos to have gone in the ultrasound tests. And 0,059 dilution would mean that 0,500 (=50 %) of the mosquitos disappeared. The results of burning candles were less impressive. 0,159 dilution caused 90 % of the mosquitos to disappear, 0,073 dilution 50 %.
Confidence Limits
 
Nonchemical
Probability
95 % confidence limits for chemical (dilution)
95 % confidence limits for log(chemical (dilution))a
Estimate
Lower bound
Upper bound
Estimate
Lower bound
Upper bound
PROBITb
Ultrasound
,010
,014
,011
,018
−4,235
−4,486
−4,042
,020
,017
,014
,020
−4,070
−4,296
−3,895
,030
,019
,015
,022
−3,966
−4,176
−3,801
,040
,021
,017
,024
−3,887
−4,086
−3,731
,050
,022
,018
,025
−3,823
−4,013
−3,673
,060
,023
,019
,027
−3,769
−3,951
−3,624
,070
,024
,020
,028
−3,721
−3,896
−3,581
,080
,025
,021
,029
−3,678
−3,848
−3,542
,090
,026
,022
,030
−3,639
−3,804
−3,506
,100
,027
,023
,031
−3,603
−3,763
−3,473
,150
,032
,027
,036
−3,455
−3,597
−3,337
,200
,036
,031
,040
−3,337
−3,467
−3,227
,250
,039
,035
,044
−3,236
−3,356
−3,131
,300
,043
,038
,048
−3,146
−3,258
−3,043
,350
,047
,042
,052
−3,062
−3,169
−2,961
,400
,051
,046
,056
−2,982
−3,085
−2,882
,450
,055
,049
,061
−2,905
−3,006
−2,803
,500
,059
,053
,066
−2,829
−2,929
−2,725
,550
,064
,058
,071
−2,753
−2,853
−2,646
,600
,069
,062
,077
−2,675
−2,777
−2,564
,650
,075
,067
,084
−2,596
−2,700
−2,478
,700
,081
,073
,092
−2,512
−2,620
−2,387
,750
,089
,079
,102
−2,421
−2,534
−2,287
,800
,098
,087
,114
−2,320
−2,440
−2,174
,850
,111
,097
,130
−2,202
−2,332
−2,042
,900
,128
,111
,153
−2,054
−2,197
−1,874
,910
,133
,115
,160
−2,018
−2,165
−1,833
,920
,138
,119
,167
−1,979
−2,129
−1,789
,930
,144
,124
,175
−1,936
−2,091
−1,740
,940
,151
,129
,185
−1,889
−2,048
−1,686
,950
,160
,135
,197
−1,834
−1,999
−1,623
,960
,170
,143
,212
−1,770
−1,942
−1,550
,970
,184
,154
,232
−1,691
−1,871
−1,459
,980
,205
,169
,262
−1,587
−1,778
−1,339
,990
,241
,196
,317
−1,422
−1,632
−1,149
Burning candles
,010
,018
,014
,021
−4,019
−4,247
−3,841
,020
,021
,017
,025
−3,854
−4,058
−3,693
,030
,024
,019
,027
−3,750
−3,939
−3,599
,040
,025
,021
,029
−3,671
−3,850
−3,528
,050
,027
,023
,031
−3,607
−3,777
−3,469
,060
,029
,024
,033
−3,553
−3,716
−3,420
,070
,030
,026
,034
−3,505
−3,662
−3,376
,080
,031
,027
,036
−3,462
−3,614
−3,336
,090
,033
,028
,037
−3,423
−3,571
−3,300
,100
,034
,029
,038
−3,387
−3,531
−3,267
,150
,039
,034
,044
−3,239
−3,367
−3,128
,200
,044
,039
,049
−3,121
−3,240
−3,015
,250
,049
,044
,054
−3,020
−3,132
−2,916
,300
,053
,048
,059
−2,930
−3,037
−2,826
,350
,058
,052
,065
−2,845
−2,950
−2,741
,400
,063
,057
,070
−2,766
−2,869
−2,658
,450
,068
,061
,076
−2,688
−2,793
−2,578
   
,500
,073
,066
,082
−2,613
−2,718
−2,497
,550
,079
,071
,089
−2,537
−2,644
−2,415
,600
,085
,076
,097
−2,459
−2,571
−2,331
,650
,093
,082
,106
−2,380
−2,495
−2,244
,700
,101
,089
,116
−2,295
−2,417
−2,151
,750
,110
,097
,129
−2,205
−2,333
−2,049
,800
,122
,106
,144
−2,104
−2,240
−1,936
,850
,137
,119
,165
−1,986
−2,133
−1,802
,900
,159
,136
,195
−1,838
−1,999
−1,633
,910
,165
,140
,203
−1,802
−1,966
−1,592
,920
,172
,145
,213
−1,763
−1,932
−1,548
,930
,179
,151
,223
−1,720
−1,893
−1,499
,940
,188
,157
,236
−1,672
−1,650
−1,444
,950
,198
,165
,251
−1,618
−1,802
−1,381
,960
,211
,175
,270
−1,554
−1,745
−1,308
,970
,229
,187
,296
−1,475
−1,675
−1,217
,980
,254
,206
,334
−1,371
−1,582
−1,096
,990
,299
,238
,404
−1,206
−1,436
−,906
aLogarithm base = 2.718
bA heterogeneity factor is used

7 Conclusion

Probit regression is, just like logistic regression, for estimating the effect of predictors on yes/no outcomes. If your predictor is multiple pharmacological treatment dosages, then probit regression may be more convenient than logistic regression, because your results will be reported in the form of response rates instead of odds ratios.
This chapter shows that probit regression is able to find response rates of different dosages of mosquito repellents.

8 Note

More background, theoretical and mathematical information of probit regression is given in the Chap. 7, Machine learning in medicine part three, Probit regression, pp 63–68, 2013, Springer Heidelberg Germany, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html