© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_39

39. Logistic Regression with Categorical Predictors (60 Patients)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 

1 General Purpose

In the Chap. 8 the effect of categorical predictors on an continuous outcome has been assessed. Linear regression could be used for the purpose. However, the categorical predictor variable had to be restructured prior to the analysis. If your outcome is binary, the analysis of categorical predictors is more easy, because SPSS provides an automatic restructure procedure.

2 Schematic Overview of Type of Data File

A211753_2_En_39_Figa_HTML.gif

3 Primary Scientific Question

Is logistic regression appropriate for assessing categorical predictors with binary outcomes.

4 Data Example

In 60 patients of four races the effect of the race category, age, and gender on the physical strength class was tested. We will use the example of the Chap. 8. The effect of race, gender, and age on physical strength was assessed. Instead of physical strength as continuous outcome, a binary outcome (physical strength < or ≥ 70 points) was applied.
Race
Age
Gender
Strength score
1,00
35,00
1,00
1,00
1,00
55,00
,00
1,00
1,00
70,00
1,00
,00
1,00
55,00
,00
,00
1,00
45,00
1,00
1,00
1,00
47,00
1,00
1,00
1,00
75,00
,00
,00
1,00
83,00
1,00
1,00
1,00
35,00
1,00
1,00
1,00
49,00
1,00
1,00
race 1 = hispanic, 2 = black, 3 = asian, 4 = white
age = years of age
gender 0 = female, 1 = male
strength score 1 = ≥70 points, 0 = <70 points
The entire data file is in “chapter39categoricalpredictors”, and is in extras.springer.com. We will start by opening the data file in SPSS.

5 Logistic Regression with Categorical Predictors

For analysis the statistical model Binary Logistic Regression in the module Regression is required.
Command:
  • Analyze....Regression....Binary Logistic Regression....Dependent: strengthbinary....Covariates: race, gender, age....click Categorical....Categorical Covariates: enter race....Reference Category: mark Last....click Continue....click OK.
Variables in the equation
 
B
S.E.
Wald
df
Sig.
Exp(B)
Step 1a
Race
   
13,140
3
,004
 
Race(1)
2,652
1,285
4,256
1
,039
14,176
Race(2)
−2,787
1,284
4,715
1
,030
,062
Race(3)
1,423
1,066
1,782
1
,182
4,149
Age
−,043
,029
2,199
1
,138
,958
Gender
1,991
,910
4,791
1
,029
7,323
Constant
1,104
1,881
,345
1
,557
3,017
aVariable(s) entered on step 1: race, age, gender
The above table shows the results of the analysis. As compared to the hispanics (used as reference category),
  • blacks are significantly more strengthy (at p = 0,039)
  • asians are significantly less strengthy (at p = 0,030)
  • whites are not significantly different from hispanics.
Age is not a significant predictor of the presence of strength.
Gender is a significant predictor of the presence of strength.
The above results are less powerful than those of the continuous outcome data. Obviously with binary outcome procedures some statistical power is lost. Nonetheless they show patterns similar to those with the continuous outcomes.

6 Conclusion

In the Chap. 8 the effect of categorical predictors on an continuous outcome was shown to be applicable for categorical predictors. However, the categorical predictor variable had to be restructured prior to the analysis. If your outcome is binary, the analysis of categorical predictors is more easy, because SPSS provides an automatic restructure procedure. The analysis is presented above.

7 Note

More background, theoretical and mathematical information of categorical predictors is given in the Chap. 21, pp 243–252, in Statistics applied to clinical studies, Springer Heidelberg Germany, 2012, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html