© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_60

60. Polynomial Analysis of Circadian Rhythms (1 Patient with Hypertension)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 
Previously partly published in Machine learning in medicine a complete overview, Chap. 79, Springer Heidelberg Germany, 2015, from the same authors.

1 General Purpose

Ambulatory blood pressure measurements and other circadian phenomena are traditionally analyzed using mean values of arbitrarily separated daytime hours. The poor reproducibility of these mean values undermines the validity of this diagnostic tool. In 1998 our group demonstrated that polynomial regression lines of the 4th to 7th order generally provided adequate reliability to describe the best fit circadian sinusoidal patterns of ambulatory blood pressure measurements (Van de Luit et al., Eur J Intern Med 1998; 9: 99–103 and 251–256).
We should add that the terms multinomial and polynomial are synonymous. However, in statistics terminology is notoriously confusing, and multinomial analyses are often, though not always, used to indicate logistic regression models with multiple outcome categories. In contrast, polynomial regression analyses are often used to name the extensions of simple linear regression models with multiple instead of first order relationships between the x and y values (Chap. 16, Curvilinear regression, pp 187–198, in: Statistics applied to clinical studies 5th edition, Springer Heidelberg Germany 2012, from the same authors as the current work). Underneath polynomial regression equations of the first-fourth order are given with y as dependent and x as independent variables.
$$ \begin{array}{ll}\mathrm{y}=\mathrm{a}+\mathrm{b}\mathrm{x}\hfill & \mathrm{first}\ \mathrm{order}\ \left(\mathrm{linear}\right)\ \mathrm{relationship}\hfill \\ {}\mathrm{y}=\mathrm{a}+\mathrm{b}\mathrm{x}+{\mathrm{cx}}^2\hfill & \mathrm{second}\ \mathrm{order}\ \left(\mathrm{parabolic}\right)\ \mathrm{relationship}\hfill \\ {}\mathrm{y}=\mathrm{a}+\mathrm{b}\mathrm{x}+{\mathrm{cx}}^2+{\mathrm{dx}}^3\hfill & \mathrm{third}\ \mathrm{order}\ \left(\mathrm{hyperbolic}\right)\ \mathrm{relationship}\hfill \\ {}\mathrm{y}=\mathrm{a}+\mathrm{b}\mathrm{x}+{\mathrm{cx}}^2+{\mathrm{dx}}^3+{\mathrm{ex}}^4\hfill & \mathrm{fourth}\ \mathrm{order}\ \left(\mathrm{sinusoidal}\right)\ \mathrm{relationship}\hfill \\ {}\mathrm{y}=\mathrm{a}+\mathrm{b}\mathrm{x}+{\mathrm{cx}}^2+{\mathrm{dx}}^3+{\mathrm{ex}}^4+{\mathrm{fx}}^5\hfill & \mathrm{fifth}\ \mathrm{order}\ \mathrm{relationship}\hfill \end{array} $$
This chapter is to assess whether this method can readily visualize circadian patterns of blood pressure in individual patients with hypertension, and, thus, be helpful for making a precise diagnosis of the type of hypertension, like borderline, diastolic, systolic, white coat, no dipper hypertension.

2 Schematic Overview of Type of Data File

A211753_2_En_60_Figa_HTML.gif

3 Primary Scientific Question

Can higher order polynomes visualize longitudinal observations in clinical research.

4 Data Example

In an untreated patient with mild hypertension ambulatory blood pressure measurement was performed using a light weight portable equipment (Space Lab Medical Inc, Redmond WA) every 30 min for 24 h. The question was, can 5th order polynomes readily visualize the ambulatory blood pressure pattern of individual patients? The first ten measurements are underneath, the entire data file is entitled “chapter60polynomes”, and is in extras.springer.com.
A211753_2_En_60_Figb_HTML.gif
SPSS statistical software will be used for polynomial modeling of these data. Open the data file in SPSS.

5 Polynomial Analysis

For analysis the module General Linear Model is required. It consists of four statistical models:
  • Univariate,
  • Multivariate,
  • Repeated Measures,
  • Variance Components.
We will use here Univariate.
Command:
  • Analyze....General Linear Model....Univariate....Dependent: enter y (mm Hg).... Covariate(s): enter x (min)....click: Options....mark: Parameter Estimates....click Continue....click Paste....in “/Design = x.” replace x with a 5th order polynomial equation tail (* is sign of multiplication)
$$ \mathrm{x}\ \mathrm{x}*\mathrm{x}\ \mathrm{x}*\mathrm{x}*\mathrm{x}\ \mathrm{x}*\mathrm{x}*\mathrm{x}*\mathrm{x}\ \mathrm{x}*\mathrm{x}*\mathrm{x}*\mathrm{x}*\mathrm{x} $$
....then click the green triangle in the upper graph row of your screen.
The underneath table is in the output sheets, and gives you the partial regression coefficients (B values) of the 5th order polynomial with blood pressure as outcome and with time as independent variable (−7,135E-6 indicates 0.000007135, which is a pretty small B value). However, in the equation it will have to be multiplied with x5, and a large very large term will result even so.
Parameter estimates
Dependent Variables: y
Parameter
B
Std. error
t
Sig.
95 % confidence interval
Lower bound
Upper bound
Intercept
206,653
17,511
11,801
,000
171,426
241,881
x
−9,112
6,336
−1,438
,157
−21,858
3,634
x*x
,966
,710
1,359
,181
−,463
2,395
x*x*x
−,047
,033
−1,437
,157
−,114
,019
x*x*x*x
,001
,001
1,471
,148
,000
,002
x*x*x*x*x
−7,135E-6
4.948E-6
−1,442
,156
−1.709E-5
2,819E-6
Parameter estimates
Dependent variable:yy
Parameter
B
Std. error
t
Sig.
95 % confidence interval
Lower bound
Upper bound
Intercept
170,284
11,120
15,314
,000
147,915
192,654
x
−7,034
4,023
−1,748
,087
−15,127
1,060
x*x
,624
,451
1,384
,173
−,283
1,532
x*x*x
−,027
,021
−1,293
,202
−,069
,015
x*x*x*x
,001
,000
1,274
,209
,000
,001
x*x*x*x*x
−3,951 E-6
3.142E-6
−1,257
,215
−1,027E-5
2,370E-6
The entire equations can be written from the above B values:
$$ \mathrm{y}=206.653-9,112\mathrm{x}+0.966{\mathrm{x}}^2-0.47{\mathrm{x}}^3+0.001{\mathrm{x}}^4+0.000007135{\mathrm{x}}^5 $$
This equation is entered in the polynomial grapher of David Wees available on the internet at “davidwees.com/polygrapher/”, and the underneath graph is drawn. This graph is speculative as none of the x terms is statistically significant. Yet, the actual data have a definite patterns with higher values at daytime and lower ones at night. Sometimes even better fit curves are obtained by taking higher order polynomes like 5th order polynomes as previously tested by us (see the above section General Purpose). We should add that in spite of the insignificant p-values in the above tables the two polynomes are not meaningless. The first one suggests some white coat effect, the second one suggests normotension and a normal dipping pattern. With machine learning meaningful visualizations can sometimes be produced of your data, even if statistics are pretty meaningless.
A211753_2_En_60_Figc_HTML.gif
A211753_2_En_60_Figd_HTML.gif
24 h ABPM recording (30 min measures) of untreated subject with hypertension and 5th order polynome (suggesting some white coat effect)
A211753_2_En_60_Fige_HTML.gif
A211753_2_En_60_Figf_HTML.gif
24 h ABPM recording (30 min measures) of the above subject treated and 5th order polynome (suggesting normotension and a normal dipping pattern).

6 Conclusion

Polynomes of ambulatory blood pressure measurements can be applied for visualizing not only hypertension types but also treatment effects, see underneath graphs of circadian patterns in individual patients (upper row) and groups of patients on different treatments (Figure from Cleophas et al, Chap. 16, Curvilinear regression, pp 187–198, in: Statistics applied to clinical studies 5th edition, Springer Heidelberg Germany 2012, with permission from the editor).
A211753_2_En_60_Figg_HTML.gif
Polynomes can of course be used for studying any other circadian rhythm like physical, mental and behavioral changes following a 24 hour cycle.

7 Note

More background, theoretical and mathematical information of polynomes is given in Chap. 16, Curvilinear regression, pp 187–198, in: Statistics applied to clinical studies 5th edition, Springer Heidelberg Germany 2012, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html