© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_20

20. Meta-regression (20 and 9 Studies)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 

1 General Purpose

Heterogeneity in meta-analysis makes pooling of the overall data pretty meaningless. Instead, a careful examination of the potential causes has to be accomplished. Regression analysis is generally very helpful for that purpose.

2 Schematic Overview of Type of Data File

A211753_2_En_20_Figa_HTML.gif

3 Primary Scientific Question

The characteristics of the studies in a meta-analysis were pretty heterogeneous. What were the causal factors of the heterogeneity.

4 Data Example 1

Twenty studies assessing the incidence of ADEs (adverse drug effects) were meta-analyzed (Atiqi et al.: Int J Clin Pharmacol Ther 2009; 47: 549–56). The studies were very heterogenous. We observed that studies performed by pharmacists (0) produced lower incidences than did the studies performed by internists (1). Also the study magnitude and age was considered as possible causes of heterogeneity. The data file is underneath.
%ADEs
Study magnitude
Clinicians’ study yes = 1
Elderly study yes = 1
Study no
21,00
106,00
1,00
1,00
1
14,40
578,00
1,00
1,00
2
30,40
240,00
1,00
1,00
3
6,10
671,00
0,00
0,00
4
12,00
681,00
0,00
0,00
5
3,40
28411,00
1,00
0,00
6
6,60
347,00
0,00
0,00
7
3,30
8601,00
0,00
0,00
8
4,90
915,00
0,00
0,00
9
9,60
156,00
0,00
0,00
10
6,50
4093,00
0,00
0,00
11
6,50
18820,00
0,00
0,00
12
4,10
6383,00
0,00
0,00
13
4,30
2933,00
0,00
0,00
14
3,50
480,00
0,00
0,00
15
4,30
19070,00
1,00
0,00
16
12,60
2169,00
1,00
0,00
17
33,20
2261,00
0,00
1,00
18
5,60
12793,00
0,00
0,00
19
5,10
355,00
0,00
0,00
20
For convenience the data file is in extras.springer.com, and is entitled “chapter20metaregression1”. We will start by opening the data file in SPSS.
A multiple linear regression will be performed with percentage ADEs as outcome variable and the study magnitude, the type of investigators (pharmacist or internist), and the age of the study populations as predictors. For analysis the statistical model Linear in the module Regression is required.
Command:
  • Analyze….Regression….Linear….Dependent: % ADEs ….Independent(s): Study magnitude, Age, and type of investigators….click OK.
Coefficientsa
Model
Unstandardized coefficients
Standardized coefficients
t
Sig.
B
Std. error
Beta
1
(Constant)
6,924
1,454
 
4,762
,000
Study-magnitude
−7,674E-5
,000
−,071
−,500
,624
Elderly = 1
−1,393
2,885
−,075
−,483
,636
Clinicians = 1
18,932
3,359
,887
5,636
,000
aDependent Variable: percentageADEs
The above table is in the output sheets, and shows the results. After adjustment for the age of the study populations and study magnitude, the type of research group was the single and very significant predictor of the heterogeneity. Obviously, internists more often diagnose ADEs than pharmacists do.

5 Data Example 2

Nine studies of the risk of infarction of patients with coronary artery disease and collateral coronary arteries were meta-analyzed. The studies were heterogeneous. A meta-regression was performed with the odds ratios of infarction as dependent and the odds ratios of various cardiovascular risk factors as independent variables.
Infarct
Diabetes
Hypert
Cholest
Smoking
0,44
1,61
1,12
2,56
0,93
0,62
0,62
1,10
1,35
0,93
0,59
1,13
0,69
1,33
1,85
0,30
0,76
0,85
1,34
0,78
0,62
1,69
0,83
1,11
1,09
1,17
 
1,02
 
1,28 (two values were missing)
0,30
0,13
0,17
0,21
0,27
0,70
1,52
0,79
0,85
1,25
0,26
0,65
0,74
1,04
0,83
Inf = odds ratio of infarction on patients with collaterals versus patients without
diabetes = odds ratio of diabetes                      ”    ”     ”
hypert = odds ratio of hypertension        ”    ”     ”
cholest = odds ratio of cholesterol           ”    ”     ”
smoking = odds ratio of smoking             ”         ”     ”
For convenience the data file is in extras.springer.com. It is entitled “chapter20metaregression2”. Simple linear regressions with the odds ratios of infarction as dependent variable were performed. For analysis again the statistical model Linear in the module Regression is required.
Command:
  • Analyze….Regression….Linear….Dependent: odds ratio of infarction ….Independent:….OK.
The underneath tables show, that, with p = 0,15 as cut-off value for significance, only diabetes and smoking were significant covariates of the odds ratios of infarction in patients with coronary artery disease and collaterals. After mean imputation of the missing values (Statistics on a Pocket Calculator Part 2, Springer New York 2012, from the same authors) the results were unchanged. In the multiple linear regression none of the covariates remained significant. However, with no more than nine studies multiple linear regression is powerless. The conclusion was that the beneficial effect of collaterals on coronary artery disease was little influenced by the traditional risk factors of coronary artery disease. Heterogeneity of this meta-analysis was unexplained.
Coefficientsa
Model
Unstandardized coefficients
Standardized coefficients
t
Sig.
B
Std. error
Beta
1
(Constant)
,284
,114
 
2,489
,047
ORdiabetes
,192
,100
,616
1,916
,104
aDependent Variable: ORinfarction
Coefficientsa
Model
Unstandardized coefficients
Standardized coefficients
t
Sig.
B
Std. error
Beta
1
(Constant)
,208
,288
 
,724
,493
ORhypertension
,427
,336
,433
1,270
,245
aDependent Variable: ORinfarction
Coefficientsa
Model
Unstandardized coefficients
Standardized coefficients
t
Sig.
B
Std. error
Beta
1
(Constant)
,447
,148
 
3,021
,023
ORcholesterol
,026
,108
,099
,243
,816
aDependent Variable: ORinfarction
Coefficientsa
Model
Unstandardized coefficients
Standardized coefficients
t
Sig.
B
Std. error
Beta
1
(Constant)
,184
,227
 
,810
,445
ORsmoking
,363
,206
,554
1,760
,122
aDependent Variable: ORinfarction

6 Conclusion

A meta-analysis of studies assessing the incidence of emergency admissions due to adverse drug effects (ADEs) was very heterogeneous. A meta-analysis of the risk of infarction in patients with coronary heart disease and collateral coronary arteries was heterogeneous. Meta-regressions are increasingly used as approach to subgroup analysis to assess heterogeneity in meta-analyses. The advantage of meta-regression compared to simple subgroup analyses is that multiple factors can be assessed simultaneously and that confounders and interacting factors can be adjusted.

7 Note

More background, theoretical and mathematical information of meta-regressions is given in Statistics applied to clinical studies 5th edition, Chap. 34, Springer Heidelberg Germany, 2012, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html