© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_14

14. Automatic Nonparametric Testing (30 Patients)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 

1 General Purpose

If your data are pretty complex and involve both repeated outcomes and different types of predictors including categorical ones, then multivariate methods (Chaps. 17 and 18) would be required for an overall analysis. However, with small samples, power is little, and an optimized univariate analysis testing the outcomes separately is an alternative. Automatic nonparametric testing chooses the best tests based on the data. Also, it takes account of nongaussian outcomes.

2 Schematic Overview of Type of Data File

A211753_2_En_14_Figa_HTML.gif

3 Primary Scientific Question

Can automatic nonparametric testing simultaneously assess the effect of multiple predictors including categorical ones on repeated outcomes and at the same account nonnormality in the outcomes.

4 Data Example

In a parallel-group study with three predictors (treatment 0, 1, and 2 correspondingly given to the groups 0, 1, and 2), and two continuous outcomes (hours of sleep and levels of side effects), assess whether the treatments are significantly different from one another.
Outcome efficacy
Outcome side effect
Predictor gender
Predictor comorbidity
Predic.. group
6,00
45,00
,00
1,00
0
7,10
35,00
,00
1,00
0
8,10
34,00
,00
,00
0
7,50
29,00
,00
,00
0
6,40
48,00
,00
1,00
0
7,90
23,00
1,00
1,00
0
6,80
56,00
1,00
1,00
0
6,60
54,00
1,00
,00
0
7,30
33,00
1,00
,00
0
5,60
75,00
,00
,00
0
Only the first ten patients are shown. The entire data file is in extras.springer.com and is entitled “chap14automaticnonparametrictesting”. Automatic nonparametric tests is available in SPSS 18 and up. Start by opening the above data file.

5 Automatic Nonparametric Testing

For analysis the statistical model Independent Samples in the module Nonparametric Tests is required.
Command:
  • Analyze….Nonparametric Tests….Independent Samples….click Objective….mark Automatically compare distributions across groups….click Fields….in Test fields: enter “hours of sleep” and “side effect score”….in Groups: enter “group”….click Settings….Choose Tests….mark “Automatically choose the tests based on the data”….click Run.
In the interactive output sheets the underneath table is given. Both the distribution of hours of sleep and side effect score are significantly different across the three categories of treatment. By double-clicking the table you will obtain an interactive set of views of various details of the analysis, entitled the Model Viewer.
Hypothesis test summary
A211753_2_En_14_Tab1_HTML.gif
Asymptotic significances are displayed. The significance level is, 05
One view provides the box and whiskers graphs (medians, quartiles, and ranges) of hours of sleep of the three treatment groups. Group 0 seems to perform better than the other two, but we don’t know where the significant differences are.
A211753_2_En_14_Figb_HTML.gif
Also the box and whiskers graph of side effect scores is given. Some groups again seem to perform better than the other. However, we cannot see whether 0 vs 1, 1 vs 2, and /or 0 vs 2 are significantly different.
A211753_2_En_14_Figc_HTML.gif
In the view space at the bottom of the auxiliary view (right half of the Model Viewer) several additional options are given. When clicking Pairwise Comparisons, a distance network is displayed with yellow lines corresponding to statistically significant differences, and black ones to insignificant ones. Obviously, the differences in hours of sleep of group 1 vs (versus) 0 and group 2 vs 0 are statistically significant, and 1 vs 2 is not. Group 0 had significantly more hours of sleep than the other two groups with p = 0,044 and 0,0001.
A211753_2_En_14_Figd_HTML.gif
A211753_2_En_14_Fige_HTML.gif
As shown below, the difference in side effect score of group 1 vs 0 is also statistically significant, and 1 vs 0, and 1 vs 2 are not. Group 0 has a significantly better side effect score than the 1 with p = 0,035, but group 0 vs 2 and 1 vs 2 are not significantly different.
A211753_2_En_14_Figf_HTML.gif
A211753_2_En_14_Figg_HTML.gif

6 Conclusion

If your data are pretty complex and involve both repeated outcomes and different types of predictors including categorical ones, then multivariate methods (Chaps. 17 and 18) would be required for an overall analysis. However with small samples power is little, and an optimized univariate analysis testing the outcomes separately is an alternative. Automatic nonparametric testing chooses the best tests based on the data. Also it takes account of nongaussian outcomes. If you wish to report the above data as a whole, then Bonferroni adjustments for multiple testing should be performed (Statistics applied to clinical studies 5th edition, Chaps. 8 and 9, Springer Heidelberg Germany, 2012, from the same authors).

7 Note

More background theoretical and mathematical information of the Kruskal-Wallis test is given in Statistics applied to clinical trials 5th edition, Chap. 2, Springer Heidelberg, 2012, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html