© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_58

58. Assessing Seasonality (24 Averages)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 

1 General Purpose

For a proper assessment of seasonality, information of a second year of observation is needed, as well as information not only of, e.g., the months of January and July, but also of adjacent months. In order to unequivocally demonstrate seasonality, all of this information included in a single test is provided by autocorrelation.
A211753_2_En_58_Figa_HTML.gif
The above graph gives a simulated seasonal pattern of C-reactive protein levels in a healthy subject. Lagcurves (dotted) are partial copies of the datacurve moved to the left as indicated by the arrows.
  • First-row graphs: the datacurve and the lagcurve have largely simultaneous positive and negative departures from the mean, and, thus, have a strong positive correlation with one another (correlation coefficient ≈ +0.6).
  • Second-row graphs: this lagcurve has little correlation with the datacurve anymore (correlation coefficient ≈ 0.0).
  • Third-row graphs: this lagcurve has a strong negative correlation with the datacurve (correlation coefficient ≈ −1.0).
  • Fourth-row graphs: this lagcurve has a strong positive correlation with the datacurve (correlation coefficient ≈ +1.0).

2 Schematic Overview of Type of Data File

A211753_2_En_58_Figb_HTML.gif

3 Primary Scientific Question

Do repeatedly measured outcome value follow a seasonal pattern.

4 Data Example

Primary question: do repeatedly measured CRP values in a healthy subject follow a seasonal pattern. If the datacurve values are averaged values with their se (standard error), then xi will change into (xi + se), and xi+1 into (xi+1 + se). This is no problem, since the se-values will even out in the regression equation, and the overall magnitude of the autocorrelation coefficient will remain unchanged, irrespective of the magnitude of the se. And, so, se-values need not be further taken into account in the autocorrelation of time series with means, unless they are very large. A data file is given below.
Average C-reactive protein in group of healthy subjects (mg/l)
Month
1,98
1
1,97
2
1,83
3
1,75
4
1,59
5
1,54
6
1,48
7
1,54
8
1,59
9
1,87
10
The entire data file is in extras.springer.com, and is entitled “chapter58seasonality”. Start by opening the data file in SPSS. We will first try and make a graph of the data.

5 Graphs of Data

Command:
  • Graphs….Chart Builder….click Scatter/Dot….click mean C-reactive protein level and drag to the Y-Axis….click time and drag to the X-Axis….click OK….. double-click in Chart Editor….click Interpolation Line….Properties: click Straight Line.
A211753_2_En_58_Figc_HTML.gif
The above graph shows that the average monthly C-reactive protein levels look inconsistent. A graph of bi-monthly averages is drawn. The data are already in the above data file.
Average C-reactive protein in group of healthy subjects (mg/l)
Month
1,90
2,00
1,87
4,00
1,56
6,00
1,67
8,00
1,73
10,00
1,84
12,00
1,89
14,00
1,84
16,00
1,61
18,00
1,67
20,00
1,67
22,00
1,90
24,00
Command:
  • Graphs….Chart Builder….click Scatter/Dot….click mean C-reactive protein level and drag to the Y-Axis….click time and drag to the X-Axis….click OK….. double-click in Chart Editor….click Interpolation Line….Properties: click Straight Line.
A211753_2_En_58_Figd_HTML.gif
The above bi-monthly graph shows a rather seasonal pattern. Autocorrelation is, subsequently, used to test significant seasonality of these data. SPSS Statistical Software is used.

6 Assessing Seasonality with Autocorrelations

For analysis the statistical model Autocorrelations in the module Forecasting is required.
Command:
  • Analyze….Forecasting.…Autocorrelations….move monthly percentages into Variable Box.…mark Autocorrelations….mark Partial Autocorrelations.…OK.
A211753_2_En_58_Fige_HTML.gif
The above graph of monthly autocorrelation coefficients with their 95 % confidence intervals is given by SPSS, and it shows that the magnitude of the monthly autocorrelations changes sinusoidally. The significant positive autocorrelations at the month no. 13 (correlation coefficients of 0,42 (SE 0,14, t-value 3,0, p < 0,01)) further supports seasonality, and so does the pattern of partial autocorrelation coefficients (not shown): it gradually falls, and a partial autocorrelation coefficient of zero is observed one month after month 13. The strength of the seasonality is assessed using the magnitude of r2 = 0,422 = 0,18. This would mean that the lagcurve predicts the datacurve by only 18 %, and, thus, that 82 % is unexplained. And so, the seasonality may be statistically significant, but it is pretty weak, and a lot of unexplained variability, otherwise called noise, is in these data.

7 Conclusion

Autocorrelation is able to demonstrate statistically significant seasonality of disease, and it does so even with imperfect data.

8 Note

More background, theoretical and mathematical information about seasonality assessments is given in Statistics applied to clinical studies 5th edition, Chap. 64, Springer Heidelberg Germany, 2012, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html