© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_4

4. Unpaired Continuous Data (Unpaired T-Test, Mann-Whitney, 20 Patients)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 

1 General Purpose

Double-blind placebo-controlled studies often include two parallel groups receiving different treatment modalities. Unlike crossover studies (Chap. 3), they involve independent treatment effects, i.e., with a zero correlation between the treatments. The two samples t-test, otherwise called the independent samples t-test or unpaired samples t-test, is appropriate for analysis.

2 Schematic Overview of Type of Data File

A211753_2_En_4_Figc_HTML.gif

3 Primary Scientific Question

Is one treatment significantly more efficaceous than the other.

4 Data Example

In a parallel-group study of 20 patients 10 of them are treated with a sleeping pill, 10 with a placebo. The first 11 patients of the 20 patient data file is given underneath.
Outcome
group
6,00
,00
7,10
,00
8,10
,00
7,50
,00
6,40
,00
7,90
,00
6,80
,00
6,60
,00
7,30
,00
5,60
,00
5,10
1,00
the group variable has 0 for placebo group, 1 for sleeping pill group
outcome variable = hours of sleep after treatment
We will start with a graph of the data. The data file is entitled “chapter4unpairedcontinuous”, and is in extras.springer.com. Start by opening the data file in SPSS.
Command:
  • Graphs....Legacy Dialogs....Error Bar....click Simple....mark Summaries for groups of cases....click Define....Variable: enter "effect treatment"....Category Axis: enter "group"....Bars Represent: choose "Confidence interval for means"....Level: choose 95%....click OK.
A211753_2_En_4_Figa_HTML.gif
The above graph shows that one group (the placebo group!!) performs much better than the other. The difference must be statistically significant, because the 95 % confidence intervals do not overlap. In order to determine the appropriate level of significance formal statistical testing will be performed next.

5 Analysis: Unpaired T-Test

For analysis the module Compare Means is required. It consists of the following statistical models:
  • Means,
  • One-Sample T-Test,
  • Independent-Samples T-Test,
  • Paired-Samples T-Test, and
  • One Way ANOVA.
Command:
  • Analyze....Compare Means....Independent Samples T-test....in dialog box Grouping Variable: Define Groups....Group 1: enter 0,00....Group 2: enter 1,00....click Continue....click OK.
In the output sheet the underneath table is given.
Independent sample test
 
Levene’s test for equality of variances
t-test for equality of means
 
95% confidence interval of the difference
F
Sig.
t
df
Sig.(2-tailed)
Mean difference
Std. Error difference
Lower
Upper
Effect treatment
Equal variances assumed
1,060
,317
3,558
18
,002
1,72000
,48339
,70443
2,73557
 
Equal variances not assumed
   
3,558
15,030
,003
1,72000
,48339
,88986
2,75014
It shows that a significant difference exists between the sleeping pill and the placebo with a p-value of 0.002 and 0.003. Generally, it is better to use the largest of the p-values given, because the smallest p-value makes assumptions that are not always warranted, like, for example in the above table, the presence of equal variances of the two sets of outcome values.

6 Alternative Analysis: Mann-Whitney Test

Just like with the Wilcoxon’s test (Chap. 3) used for paired data, instead of the paired t-test, the Mann-Whitney test is a nonparametric alternative for the unpaired t-test. If the data have a Gaussian distribution, then it is appropriate to use this test even so. More explanations about Gaussian or parametric distributions are given in Statistics applied to clinical studies 5th edition, 2009, Chap. 2, Springer Heidelberg Germany, 2012, from the same authors. For analysis Two-Independent-Samples Tests in the module Nonparametric Tests is required.
Command:
  • Analyze....Nonparametric....Two-Independent-Samples Tests....Test Variable List: enter ëffect treatment"....Group Variable: enter "group"....click group(??)....click Define Groups....Group 1: enter 0,00....Group 2: enter 1,00....mark Mann-Whitney U....click Continue....click OK.
A211753_2_En_4_Figb_HTML.gif
The nonparametric Mann-Whitney test produces approximately the same result as the unpaired t-test. The p-value equals 0,005 corrected for multiple identical values and even 0,003 uncorrected. The former result is slightly larger, because it takes into account more, namely, that all tests are 2-tailed (not a single but two sides of the Gaussian distribution is accounted). Which of the two results is in your final report, will not make too much of a difference. Ties are rank numbers with multiple values.

7 Conclusion

Statistical tests for assessing parallel-groups studies are given, both those that assume normality, and those that account nonnormality. It may be prudent to use the latter tests if your data are small, and, if nonnormality can not be ruled out. Normality of your outcome data can be statistically tested by goodness of fit tests, and can be graphically assessed with quantile-quantile plots (see Sect. 8).

8 Note

More explanations about Gaussian or parametric distributions are given in Statistics applied to clinical studies 5th edition, 2012, Chaps. 1 and 2, Springer Heidelberg Germany, from the same authors.
Normality of your outcome data can be statistically tested by goodness of fit tests (Statistics applied to clinical studies 5th edition, 2012, Chap. 42, Springer Heidelberg Germany, from the same authors), and can be graphically assessed with quantile-quantile plots (Machine Learning in Medicine a Complete Overview, 2015, Chap. 42, pp 253–260, Springer Heidelberg Germany, from the same authors).
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html