© Springer International Publishing Switzerland 2016
Ton J. Cleophas and Aeilko H. ZwindermanSPSS for Starters and 2nd Levelers10.1007/978-3-319-20600-4_55

55. Log Rank Testing (60 Patients)

Ton J. Cleophas1, 2  and Aeilko H. Zwinderman2, 3
(1)
Department Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
(2)
European College Pharmaceutical Medicine, Lyon, France
(3)
Department Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
 

1 General Purpose

Survival curves plot the percentages of survival as a function of time. With the Kaplan-Meier method, survival is recalculated every time a patient dies To calculate the fraction of patients who survive a particular day, simply divide the numbers still alive after the day by the number alive before the day. Also exclude those who are lost (= censored) on the very day and remove from both the numerator and denominator. To calculate the fraction of patients who survive from day 0 until a particular day, multiply the fraction who survive day-1, times the fraction of those who survive day-2, etc.
A211753_2_En_55_Figa_HTML.gif
Survival is essentially expressed in the form of proportions or odds, and statistical testing whether one treatment modality scores better than the other in terms of providing better survival can be effectively done by using multiple chi-square tests. An example is in the above figure. In the i-th 2-month period we have left alive the following numbers: ai and bi in curve 1, ci and di in curve 2,
A211753_2_En_55_Figb_HTML.gif
$$ \mathrm{Odds}\kern0.5em \mathrm{ratio} = \frac{{\mathrm{a}}_{\mathrm{i}}/{\mathrm{b}}_{\mathrm{i}}}{{\mathrm{c}}_{\mathrm{i}}/{\mathrm{d}}_{\mathrm{i}}}=\frac{{\mathrm{a}}_{\mathrm{i}}{\mathrm{d}}_{\mathrm{i}}}{{\mathrm{b}}_{\mathrm{i}}{\mathrm{c}}_{\mathrm{i}}} $$
Significance of difference between the curves is calculated according to the added products “ad” divided by “bc”. This can be readily carried out by the Mantel-Haenszl summary chi-square test:
$$ {\chi}_{\mathrm{M}\hbox{-} \mathrm{H}}^2=\frac{\left(\ {\displaystyle \sum {\mathrm{a}}_{\mathrm{i}}}-{\displaystyle \sum \Big[\left({\mathrm{a}}_{\mathrm{i}}+{\mathrm{b}}_{\mathrm{i}}\right)}\Big({\mathrm{a}}_{\mathrm{i}}+{\mathrm{c}}_{\mathrm{i}}\right)/\left({\mathrm{a}}_{\mathrm{i}}+{\mathrm{b}}_{\mathrm{i}}+{\mathrm{c}}_{\mathrm{i}}+{\mathrm{d}}_{\mathrm{i}}\right)\left]\right){}^2}{{\displaystyle \sum \left[\left({\mathrm{a}}_{\mathrm{i}}+{\mathrm{b}}_{\mathrm{i}}\right)\Big({\mathrm{c}}_{\mathrm{i}}+{\mathrm{d}}_{\mathrm{i}}\right)}\left({\mathrm{a}}_{\mathrm{i}}+{\mathrm{c}}_{\mathrm{i}}\right)\left({\mathrm{b}}_{\mathrm{i}}+{\mathrm{d}}_{\mathrm{i}}\right)/{\left({\mathrm{a}}_{\mathrm{i}}+{\mathrm{b}}_{\mathrm{i}}+{\mathrm{c}}_{\mathrm{i}}+{\mathrm{d}}_{\mathrm{i}}\right)}^3\Big]} $$
where we thus have multiple 2 × 2 contingency tables e.g. one for every last day of a subsequent month of the study. With 18 months follow-up the procedure would yield 18 2 × 2-contingency-tables. This Mantel Haenszl summary chi square test is more routinely called log rank test (this name is rather confusing because there is no logarithm involved). Log rank testing is more general than Cox regression (Chaps. 56 and 57) for survival analysis, and does not require the Kaplan-Meier patterns to be exponential.

2 Schematic Overview of Type of Data File

A211753_2_En_55_Figc_HTML.gif

3 Primary Scientific Question

Does the log rank test provide a significant difference in survival between the two treatment groups in a parallel-group study.

4 Data Example

Time to event
Event
Treat
Age
Gender
1 = yes
0 or 1
years
0 = female
1,00
1
0
65,00
,00
1,00
1
0
66,00
,00
2,00
1
0
73,00
,00
2,00
1
0
54,00
,00
2,00
1
0
46,00
,00
2,00
1
0
37,00
,00
2,00
1
0
54,00
,00
2,00
1
0
66,00
,00
2,00
1
0
44,00
,00
3,00
0
0
62,00
,00
In 60 patients the effect of treatment modality on time to event was estimated with the log rank tests. The entire data file is in extras.springer.com, and is entitled “chapter55logrank”. Start by opening the data file in SPSS.

5 Log Rank Test

For analysis the statistical model Kaplan-Meier in the module Survival is required.
Command:
  • Analyze….Survival….Kaplan-Meier….Time: follow months….Status: event…. Define Event: enter 1….click Continue....click Factor: enter treatment….Compare Factor Levels….mark: Log rank….click Continue…. click Options....click Plots…. mark: Hazard….mark: Survival….click Continue….click OK.
The underneath tables and graphs are in the output sheets.
Case processing summary
treatment
Total N
N of events
Censored
N
Percent
0
30
22
8
26,7 %
1
30
18
12
40,0 %
Overall
60
40
20
33,3 %
Overall comparisons
 
Chi-square
df
Sia.
Log rank (Mantel-Cox)
9,126
1
,003
Test of equality of survival distributions for the different levels of treat
The log rank test is statistically significant at p = 0.003. In Chap. 57, a Cox regression of the same data will be performed and will provide a p-value of only 0.02. Obviously, the log rank test better fits the data than does Cox regression.
A211753_2_En_55_Figd_HTML.gif
A211753_2_En_55_Fige_HTML.gif
The above figures show on the y-axis % of survivors, on the x-axis the time (months). The treatment 1 (indicated in the graph as 0) seems to cause fewer survivors than does treatment 2 (indicated in the graph as 1). The above figure shows that with treatment 1 few patients died in the first months. With treatment 2 the patients stopped dying after 18 months. These patterns are not very exponential, and, therefore, may not fit the exponential Cox model very well. The logrank test may be more appropriate for these data. The disadvantage of log rank tests is that it can not be easily adjusted for relevant prognostic factors like age and gender. Multiple Cox regression has to be used for that purpose.

6 Conclusion

Log rank testing is generally more appropriate for testing survival data than Cox regression. The log rank test calculates a summary chi-square p-value and is more sensitive than Cox regression. The advantage of Cox regression is that it can adjust relevant prognostic factors, while log rank cannot. Yet the log rank is a more appropriate method, because it does not require the Kaplan-Meier patterns to be exponential. The above curves are not exponential at all, and so the Cox model may not fit the data very well.

7 Note

More background, theoretical, and mathematical information about survival analyses is given in Statistics applied to clinical studies 5th edition, Chaps. 3 and 17, Springer Heidelberg Germany, 2012, from the same authors.
SPSS for Starters and 2nd Levelers
ACoverHTML.html
A211753_2_En_BookFrontmatter_OnlinePDF.html
A211753_2_En_1_ChapterPart1.html
A211753_2_En_1_Chapter.html
A211753_2_En_2_Chapter.html
A211753_2_En_3_Chapter.html
A211753_2_En_4_Chapter.html
A211753_2_En_5_Chapter.html
A211753_2_En_6_Chapter.html
A211753_2_En_7_Chapter.html
A211753_2_En_8_Chapter.html
A211753_2_En_9_Chapter.html
A211753_2_En_10_Chapter.html
A211753_2_En_11_Chapter.html
A211753_2_En_12_Chapter.html
A211753_2_En_13_Chapter.html
A211753_2_En_14_Chapter.html
A211753_2_En_15_Chapter.html
A211753_2_En_16_Chapter.html
A211753_2_En_17_Chapter.html
A211753_2_En_18_Chapter.html
A211753_2_En_19_Chapter.html
A211753_2_En_20_Chapter.html
A211753_2_En_21_Chapter.html
A211753_2_En_22_Chapter.html
A211753_2_En_23_Chapter.html
A211753_2_En_24_Chapter.html
A211753_2_En_25_Chapter.html
A211753_2_En_26_Chapter.html
A211753_2_En_27_Chapter.html
A211753_2_En_28_Chapter.html
A211753_2_En_29_Chapter.html
A211753_2_En_30_Chapter.html
A211753_2_En_31_Chapter.html
A211753_2_En_32_Chapter.html
A211753_2_En_33_Chapter.html
A211753_2_En_34_ChapterPart2.html
A211753_2_En_34_Chapter.html
A211753_2_En_35_Chapter.html
A211753_2_En_36_Chapter.html
A211753_2_En_37_Chapter.html
A211753_2_En_38_Chapter.html
A211753_2_En_39_Chapter.html
A211753_2_En_40_Chapter.html
A211753_2_En_41_Chapter.html
A211753_2_En_42_Chapter.html
A211753_2_En_43_Chapter.html
A211753_2_En_44_Chapter.html
A211753_2_En_45_Chapter.html
A211753_2_En_46_Chapter.html
A211753_2_En_47_Chapter.html
A211753_2_En_48_Chapter.html
A211753_2_En_49_Chapter.html
A211753_2_En_50_Chapter.html
A211753_2_En_51_Chapter.html
A211753_2_En_52_Chapter.html
A211753_2_En_53_Chapter.html
A211753_2_En_54_Chapter.html
A211753_2_En_55_ChapterPart3.html
A211753_2_En_55_Chapter.html
A211753_2_En_56_Chapter.html
A211753_2_En_57_Chapter.html
A211753_2_En_58_Chapter.html
A211753_2_En_59_Chapter.html
A211753_2_En_60_Chapter.html
A211753_2_En_BookBackmatter_OnlinePDF.html