Il primo centesimo di secondo
157
è nota come « teorie di gauge non abeliane » per ragioni troppo tecniche perché possano essere spiegate in questa sede.) Tali teorie hanno la notevole proprietà della « libertà asintotica »: a distanze asintoticamente brevi o ad alte energie, i quark si comportano come particelle libere. J.C. Collins e M.J. Perry hanno dimostrato anche, all’Università di Cambridge, che in ogni teoria asintoticamente libera le proprietà di un mezzo a temperatura e densità sufficientemente elevate sono essenzialmente le stesse che il mezzo avrebbe se consistesse solo di particelle libere. La libertà asintotica di queste teorie di gauge non abeliane fornisce così una solida giustificazione matematica al quadro semplicissimo del primo centesimo di secondo: una frazione di tempo in cui l’universo era composto di particelle elementari libere.
Il modello dei quark funziona benissimo in una vasta gam-ma di applicazioni. Protoni e neutroni si comportano veramente come se constassero di tre quark, i mesoni ρ si comportano come se constassero di un quark e di un antiquark, e così via.
Nonostante questo successo, però, il modello dei quark ci po-ne un problema imbarazzante: neppure con le massime energie fornite dagli acceleratori oggi esistenti è stato finora possibile scindere un adrone nei quark che lo comporrebbero.
Anche nella cosmologia ci troviamo di fronte alla medesima impossibilità di isolare quark liberi. Se veramente gli adroni erano scissi in quark liberi nelle condizioni di altissima temperatura dominanti nell’universo iniziale, ci si potrebbe attendere che qualche quark rimasto libero si sia conservato come tale fino a oggi. L’astrofisico sovietico Ja. B. Zel’dovich ha sti-mato che i quark liberi residui dovrebbero essere presenti nell’universo attuale press’a poco con la stessa frequenza degli atomi d’oro. Inutile dire che, se l’oro non è abbondante, è certo molto più facile procurarsi qualche decina di grammi d’oro che non di quark.
L’enigma dell’inesistenza di quark liberi isolati è fra i pro-158 I primi tre minuti
blemi più importanti che si pongano oggi ai fisici teorici. Gross, Wilczek e chi scrive hanno ipotizzato che la « libertà asintotica » fornisca una possibile spiegazione. Se la forza dell’interazione fra due quark diminuisce quando essi vengono spinti l’uno a stretto contatto dell’altro, è vero anche che aumenta quando vengono allontanati. L’energia richiesta per allontanare un quark dagli altri quark presenti in un normale adrone aumenta quindi con l’aumentare della distanza, e pare che diven-ga infine sufficiente a creare dal vuoto nuove coppie quark-antiquark. Ci troviamo infine di fronte non più a vari quark liberi ma a vari comuni adroni. È esattamente come se si cer-casse di isolare un capo di un pezzo di spago; se si tira con forza lo spago si romperà, ma come risultato finale si otterran-no due pezzi di spago, ciascuno con due capi! Alle origini dell’universo i quark dovevano essere abbastanza vicini per non sentire queste forze e per potersi comportare come particelle libere. Quando però l’universo raggiunse un certo grado di espansione e di raffreddamento, ogni quark libero presente d o -
vette annichilarsi con un antiquark o altrimenti trovarsi un p o -
sticino tranquillo all’interno di un protone o di un neutrone.
Tanto dovrebbe bastare a proposito delle interazioni forti.
Ci imbatteremo in altri problemi quando invertiremo l’orologio del tempo verso i primissimi istanti.
Una conseguenza davvero affascinante delle moderne teorie delle particelle elementari è che l’universo può essere passato per una transizione di fase, come il congelamento dell’acqua quando la sua temperatura scende sotto i 2 7 3 °K (= 0 ° C ) .
Questa transizione di fase non è associata alle interazioni forti, bensì all’altra classe di interazioni a breve raggio d’azione della fisica delle particelle, le cosiddette interazioni deboli.
Le interazioni deboli sono quelle da cui dipendono taluni processi di decadimento radioattivo, come il decadimento di un neutrone libero (cfr. p. 107) o, più genericamente, ogni reazione implicante un neutrino (cfr. p. 112). Come indica il loro Il primo centesimo di secondo
159
nome, le interazioni deboli sono molto più deboli delle interazioni elettromagnetiche o delle interazioni forti. Per esempio, in una collisione fra un neutrino e un elettrone a un’energia di un milione di elettronvolt, la forza debole è circa un deci-milionesimo (10-7) della forza elettromagnetica agente fra due elettroni che si urtano con la medesima energia.
Nonostante la debolezza delle interazioni deboli, si pensa da molto tempo alla possibilità che esista una relazione profonda fra le forze deboli e le forze elettromagnetiche. Una teoria di campo che unifica queste due forze fu proposta nel 1967
da me e nel 1968, indipendentemente, da Abdus Salam. Questa teoria prediceva una nuova classe di interazioni deboli, le cosiddette correnti neutre, la cui esistenza fu confermata sperimentalmente nel 1973. Essa trovò un ulteriore supporto nella scoperta, a partire dal 1974, di un’intera famiglia di nuovi adroni. L’idea chiave di questo tipo di teoria è che la natura possiede un grado di simmetria molto elevato che connette le varie particelle e forze ma che viene oscurato nei fenomeni fisici comuni. Le teorie di campo usate dopo il 1973 per descrivere le interazioni forti sono del medesimo tipo matematico (teorie di gauge non abeliane), e molti fisici ritengono oggi che le teorie di gauge possano fornire una base unificata per la comprensione di tutte le forze della natura: forze deboli, elettromagnetiche, forti e forse anche gravitazionali. A suo sostegno questa concezione ha una proprietà delle teorie di gauge che, congetturata da Salam e da me, è stata dimostrata per la prima volta nel 1971 da Gerard ‘t Hoft e B. Lee; i contributi dei diagrammi di Feynman complessi, pur essendo apparentemente in-finiti, danno risultati finiti per le velocità di tutti i processi fisici.
Per gli studi sulle origini dell’universo, l’aspetto importante delle teorie di gauge è che, come indicato nel 1972 da D . A .
Kirzhnic e da A . D . Linde, dell’Istituto di Fisica Lebedev di Mosca, queste teorie presentano una transizione di fase, una sorta di congelamento, a una « temperatura critica » di circa 160 I primi tre minuti
3 0 0 0 bilioni di gradi (3 X 1015 °K). A temperature inferiori alla temperatura critica, l’universo era com’è adesso: le interazioni deboli erano deboli e avevano un breve raggio d’azione.
A temperature superiori alla temperatura critica l’unità essenziale fra le interazioni deboli e le interazioni elettromagnetiche era manifesta: le interazioni deboli obbedivano al medesimo tipo di legge della proporzione inversa al quadrato propria delle interazioni elettromagnetiche e avevano press’a poco la medesima forza.
L’analogia con un bicchiere d’acqua che sta gelando è istrut-tiva per la nostra trattazione. Al di sopra del punto di congelamento l’acqua, allo stato liquido, presenta un grado elevato di omogeneità: la probabilità di trovare una molecola d’acqua in un punto all’interno del bicchiere è esattamente la stessa che in ogni altro punto. Quando l’acqua gela, però, questa simmetria fra punti diversi nello spazio va in parte perduta: il ghiaccio forma un reticolo cristallino con le molecole d’acqua che occupano talune posizioni regolarmente intervallate e con una probabilità quasi nulla di trovare molecole d’acqua in qualsiasi altra posizione. Analogamente, quando l’universo « gelò » in coincidenza col calare della temperatura al di sotto di 3 0 0 0
bilioni di gradi, andò perduta una simmetria: non la sua omogeneità spaziale, come nel nostro bicchiere di ghiaccio, bensì la simmetria fra le interazioni deboli e le interazioni elettromagnetiche.
Si può spingere l’analogia ancora oltre. Come tutti sanno, quando l’acqua gela non forma di solito un cristallo di ghiaccio perfetto, ma qualcosa di molto più complesso: una con-gerie di porzioni cristalline separate da vari tipi di irregolarità del cristallo. Anche l’universo gelò in porzioni distinte? Noi viviamo in una di tali porzioni, in cui la simmetria fra le interazioni deboli ed elettromagnetiche si è infranta in modo particolare, e finiremo col tempo per scoprire altre porzioni, con proprietà distinte?