OBJETOS CON GRAN SPIN

Para un sistema cuántico en que el número de estados base es mayor que dos, el espacio de estados físicamente distinguibles es más complicado que la esfera de Riemann.

Sin embargo, en el caso del spin la propia esfera de Riemann tiene siempre por sí misma un papel geométrico directo que jugar. Consideremos una partícula o átomo en reposo con masa y de spin n × ℏ/2. El spin define entonces un sistema cuántico de (n + 1) estados. (Para una partícula sin masa que gira, es decir, una que viaje a la velocidad de la luz, tal como un fotón, el spin es siempre un sistema de dos estados como el descrito antes, pero para una partícula con masa el número de estados crece con el spin).

Si decidimos medir este spin en alguna dirección, encontramos que existen n + 1 diferentes resultados posibles, dependiendo de la cantidad del spin que se halle orientada a lo largo de dicha dirección. En términos de la unidad fundamental ℏ/2, los posibles resultados para el valor del spin en dicha dirección son n, n − 2, n − 4, …, 2 − n o n. Por lo cual, para n = 2 los valores son 2, 0 o −2; para n = 3, los valores son 3, 1, −1, o −3, etc. Los valores negativos corresponden al spin que apunta principalmente en la dirección opuesta a la que se está midiendo. El caso de spin 1/2, es decir n = 1, el valor 1 corresponde a «sí» y el valor −1 corresponde a «no».

Ahora bien, resulta, aunque no intentaré explicar las razones (Majorana, 1932; Penrose, 1987a), que todo estado de spin (salvo proporcionalidad) para spin ℏn/2 está caracterizado unívocamente por un conjunto (no ordenado) de n puntos en la esfera de Riemann —es decir, por n direcciones (habitualmente distintas) que salen del centro hacia afuera (véase figura VI.29)—. (Estas direcciones están caracterizadas por las mediciones que podríamos realizar en el sistema: si medimos el spin en una de ellas, es seguro que el resultado no estará completamente en la dirección opuesta, esto es, dará uno de los valores n, n − 2, n − 4, …, 2 − n, pero no −n). En el caso particular n = 1, como el electrón anterior, tenemos un punto en la esfera de Riemann, y éste es simplemente el punto caracterizado por q en las descripciones que hicimos.

FIGURA VI.29. Un estado general de spin superior para una partícula con masa, puede describirse como una colección de estados de spin 1/2 apuntando en direcciones arbitrarias.

Pero para valores mayores del spin la imagen es más elaborada y es como la acabo de describir, aunque no es muy familiar a los físicos.

Hay algo enigmático en esta descripción. Frecuentemente se tiende a pensar que, en un sentido apropiado de límite, las descripciones cuánticas de los átomos (o las partículas elementales o las moléculas) coincidirán aproximadamente con las newtonianas clásicas cuando el sistema sea grande y complicado. Sin embargo, dicho así, esto es sencillamente falso porque —como hemos visto— los estados de spin de un objeto de gran momento angular corresponderán a un gran número de puntos salpicados por toda la esfera de Riemann.[6.21]

Podemos considerar el spin del objeto como un lote completo de spines 1/2 apuntando en todas las direcciones que determinan estos puntos. Sólo algunos de esos estados combinados —a saber, aquellos en los que la mayoría de los puntos se concentran en una pequeña región de la esfera (es decir, en los que la mayoría de los spines y apuntan aproximadamente en la misma dirección)— corresponderán a los verdaderos estados de momento angular que encontramos normalmente con los objetos clásicos, como las bolas de cricket. Hubiéramos esperado que si escogemos un estado de spin para el que la medida total de éste es un número muy grande (en términos de ℏ/2), aunque al azar en todo lo demás, entonces empezara a emerger algo similar al spin clásico. Pero no es así como funcionan las cosas. ¡En general, los estados de spin cuánticos cuando el spin total es grande no se parecen en nada a los clásicos!

¿Cómo debe hacerse, entonces, la correspondencia con el momento angular de la física clásica? Aunque la mayoría de los estados cuánticos de spin grande no se parecen a los clásicos, ellos son combinaciones lineales de estados (ortogonales) cada uno de los cuales se parece a uno clásico. De algún modo se realiza automáticamente una «medición» en el sistema y el estado «salta» (con cierta probabilidad) a uno u otro de esos estados similares a los clásicos. La situación es análoga con otras propiedades del sistema clásicamente medibles, y no sólo el momento angular. Es este aspecto de la mecánica cuántica el que debe entrar en juego cuando se quiere que un sistema «alcance el nivel clásico». Antes de que podamos discutir los sistemas cuánticos «grandes» o «complicados», tendremos que poseer alguna noción acerca de la manera singular en que la mecánica cuántica trata los sistemas que incluyen más de una partícula.

La nueva mente del emperador
cubierta.xhtml
sinopsis.xhtml
titulo.xhtml
info.xhtml
dedicatoria.xhtml
Nota_para_el_lector.xhtml
Agradecimientos.xhtml
Procedencia_de_las_imagenes.xhtml
Prefacio.xhtml
Prologo.xhtml
Capitulo_1.xhtml
Capitulo_1_1.xhtml
Capitulo_1_2.xhtml
Capitulo_1_3.xhtml
Capitulo_1_4.xhtml
Capitulo_1_5.xhtml
Capitulo_1_6.xhtml
Capitulo_2.xhtml
Capitulo_2_1.xhtml
Capitulo_2_2.xhtml
Capitulo_2_3.xhtml
Capitulo_2_4.xhtml
Capitulo_2_5.xhtml
Capitulo_2_6.xhtml
Capitulo_2_7.xhtml
Capitulo_2_8.xhtml
Capitulo_2_9.xhtml
Capitulo_3.xhtml
Capitulo_3_1.xhtml
Capitulo_3_2.xhtml
Capitulo_3_3.xhtml
Capitulo_3_4.xhtml
Capitulo_3_5.xhtml
Capitulo_3_6.xhtml
Capitulo_3_7.xhtml
Capitulo_4.xhtml
Capitulo_4_1.xhtml
Capitulo_4_2.xhtml
Capitulo_4_3.xhtml
Capitulo_4_4.xhtml
Capitulo_4_5.xhtml
Capitulo_4_6.xhtml
Capitulo_4_7.xhtml
Capitulo_4_8.xhtml
Capitulo_4_9.xhtml
Capitulo_4_10.xhtml
Capitulo_4_11.xhtml
Capitulo_4_12.xhtml
Capitulo_5.xhtml
Capitulo_5_1.xhtml
Capitulo_5_2.xhtml
Capitulo_5_3.xhtml
Capitulo_5_4.xhtml
Capitulo_5_5.xhtml
Capitulo_5_6.xhtml
Capitulo_5_7.xhtml
Capitulo_5_8.xhtml
Capitulo_5_9.xhtml
Capitulo_5_10.xhtml
Capitulo_5_11.xhtml
Capitulo_5_12.xhtml
Capitulo_5_13.xhtml
Capitulo_5_14.xhtml
Capitulo_5_15.xhtml
Capitulo_6.xhtml
Capitulo_6_1.xhtml
Capitulo_6_2.xhtml
Capitulo_6_3.xhtml
Capitulo_6_4.xhtml
Capitulo_6_5.xhtml
Capitulo_6_6.xhtml
Capitulo_6_7.xhtml
Capitulo_6_8.xhtml
Capitulo_6_9.xhtml
Capitulo_6_10.xhtml
Capitulo_6_11.xhtml
Capitulo_6_12.xhtml
Capitulo_6_13.xhtml
Capitulo_6_14.xhtml
Capitulo_6_15.xhtml
Capitulo_6_16.xhtml
Capitulo_6_17.xhtml
Capitulo_6_18.xhtml
Capitulo_6_19.xhtml
Capitulo_6_20.xhtml
Capitulo_6_21.xhtml
Capitulo_6_22.xhtml
Capitulo_6_23.xhtml
Capitulo_6_24.xhtml
Capitulo_7.xhtml
Capitulo_7_1.xhtml
Capitulo_7_2.xhtml
Capitulo_7_3.xhtml
Capitulo_7_4.xhtml
Capitulo_7_5.xhtml
Capitulo_7_6.xhtml
Capitulo_7_7.xhtml
Capitulo_7_8.xhtml
Capitulo_7_9.xhtml
Capitulo_7_10.xhtml
Capitulo_7_11.xhtml
Capitulo_8.xhtml
Capitulo_8_1.xhtml
Capitulo_8_2.xhtml
Capitulo_8_3.xhtml
Capitulo_8_4.xhtml
Capitulo_8_5.xhtml
Capitulo_9.xhtml
Capitulo_9_1.xhtml
Capitulo_9_2.xhtml
Capitulo_9_3.xhtml
Capitulo_9_4.xhtml
Capitulo_9_5.xhtml
Capitulo_9_6.xhtml
Capitulo_9_7.xhtml
Capitulo_9_8.xhtml
Capitulo_9_9.xhtml
Capitulo_9_10.xhtml
Capitulo_9_11.xhtml
Capitulo_9_12.xhtml
Capitulo_10.xhtml
Capitulo_10_1.xhtml
Capitulo_10_2.xhtml
Capitulo_10_3.xhtml
Capitulo_10_4.xhtml
Capitulo_10_5.xhtml
Capitulo_10_6.xhtml
Capitulo_10_7.xhtml
Capitulo_10_8.xhtml
Capitulo_10_9.xhtml
Capitulo_10_10.xhtml
Capitulo_10_11.xhtml
Capitulo_10_12.xhtml
Capitulo_10_13.xhtml
Capitulo_10_14.xhtml
Capitulo_10_15.xhtml
Capitulo_10_16.xhtml
Epilogo.xhtml
Referencias.xhtml
autor.xhtml
notas.xhtml