EL TEOREMA DE GÖDEL

Una parte del argumento de Gödel es muy complicada y realmente no es necesario que la examinemos. Pero la idea central era sencilla, bella y profunda; podremos apreciar esta idea. La parte complicada (que también contiene mucho ingenio) consistía en mostrar en detalle cómo se pueden codificar realmente las reglas de inferencia individuales del sistema formal, y también el uso de sus diversos axiomas, en operaciones aritméticas. (¡Sin embargo, un aspecto de la parte profunda era hacer comprender que esto era algo fructífero!).

Para llevar a cabo esta codificación necesitamos encontrar alguna forma conveniente de etiquetar las proposiciones mediante números naturales. Una forma consistiría simplemente en utilizar algún tipo de orden «alfabético» para las cadenas de símbolos del sistema formal con una longitud específica, dentro de una ordenación global según la longitud de la cadena. (Así, podrían ordenarse alfabéticamente las cadenas de longitud uno, seguidas de las cadenas de longitud dos, alfabéticamente ordenadas, seguidas de las cadenas de longitud tres, etc.). Esto se llama orden lexicográfico.[4.5] En realidad, Gödel utilizó originalmente un sistema de numeración más complicado, pero las diferencias no son importantes en este momento.

Nos interesaremos especialmente en las funciones proposicionales que dependen de una sola variable, como es el caso de la G(w) anterior. Sea Pn(w) la n-ésima de estas funciones proposicionales (en el orden elegido para las cadenas de símbolos) aplicada a w.

(Podemos permitirnos, si queremos, que nuestra numeración sea un poco «chapucera», de forma que algunas de estas expresiones no sean sintácticamente correctas. Esto hace la codificación aritmética mucho más fácil que si tratáramos de omitir todas las expresiones sintácticamente incorrectas).

Si Pn(w) es sintácticamente correcta será algún enunciado aritmético perfectamente bien definido que concierne a los dos números naturales n y w. Cuál sea exactamente este enunciado dependerá de los detalles del sistema de numeración específico que hayamos elegido. Eso pertenece a la parte complicada del argumento y no nos interesa aquí.

Las cadenas de proposiciones que constituyen una demostración de algún teorema en el sistema pueden ser etiquetadas también mediante números naturales utilizando el esquema de ordenación escogido. Denotemos mediante

Πn

la n-ésima demostración. (De nuevo, podemos utilizar una numeración «chapucera» en la que para algunos valores de n la expresión «Πn» no es sintácticamente correcta y por lo tanto no demuestra ningún teorema).

Consideremos ahora la siguiente función proposicional, que depende del número natural w:

~∃xx demuestra Pw(w)].

El enunciado dentro del paréntesis cuadrado se da parcialmente en palabras, pero es un enunciado perfecta y exactamente bien definido. Afirma que la x-ésima demostración es realmente una demostración de la proposición que constituye Pw( ) aplicada al propio valor w. El cuantificador existencial negado, fuera del paréntesis, sirve para eliminar una de las variables («no existe un x tal que…»), de modo que nos queda una función proposicional aritmética que sólo depende de una variable w. La expresión global afirma que no existe demostración de Pw(w). Supondré que está estructurada de una manera sintácticamente correcta (incluso si Pw(w) no lo está —en cuyo caso el enunciado sería verdadero—, puesto que no puede haber demostración de una expresión sintácticamente incorrecta). De hecho, debido a las traducciones a la aritmética que se supone hemos llevado a cabo, el enunciado de arriba es en realidad un enunciado aritmético relativo al número natural w (siendo la parte contenida entre paréntesis cuadrados un enunciado aritmético bien definido relativo a dos números naturales x y w).

No resulta obvio que los enunciados puedan ser realmente codificados en la aritmética, aunque pueden serlo. Mostrar que tales enunciados pueden ser realmente codificados de esta forma es el principal «trabajo duro» incluido en la parte complicada del argumento de Gödel. Al igual que antes, cuál sea exactamente el enunciado aritmético dependerá de los detalles de numerosos sistemas, y dependerá en gran medida de la estructura detallada de los axiomas y reglas de nuestro sistema formal. Puesto que todo eso pertenece a la parte complicada, no nos interesaremos ahora por los detalles.

Hemos numerado todas las funciones proposicionales que dependen de una sola variable, de modo que la que acabamos de escribir debe tener asignado un número. Escribamos este número como k. Nuestra función proposicional es la k-ésima de la lista. Por consiguiente

~∃xx demuestra Pw(w)] = Pk(w)

Examinemos ahora esta función para el valor w particular: w = k. Tenemos

~∃xx demuestra Pk(k)] = Pk(k).

La proposición especifica Pk(k) es un enunciado aritmético perfectamente bien definido (sintácticamente correcto). ¿Tiene una demostración dentro de nuestro sistema formal? ¿Tiene demostración su negación ~Pk(k)? La respuesta a ambas preguntas debe ser «no». Podemos verlo examinando el significado subyacente en el procedimiento de Gödel. Aunque Pk(k) es sólo una proposición aritmética, la hemos construido de modo que afirma lo que se ha escrito en el lado izquierdo: «no existe demostración, dentro del sistema, de la proposición Pk(k)».

Si hemos sido cuidadosos al establecer nuestros axiomas y reglas de inferencia, y suponiendo que hayamos hecho bien nuestra numeración, entonces no puede haber ninguna demostración de esta Pk(k) dentro del sistema. En efecto, si hubiera tal demostración, el significado del enunciado que Pk(k) realmente afirma, a saber, que no existe demostración, sería falso, de modo que Pk(k) tendría que ser falsa como proposición aritmética. ¡Nuestro sistema formal no debería estar tan mal construido como para permitir que se demuestren proposiciones falsas! Por consiguiente, debe ser el caso que, de hecho, no hay demostración de Pk(k). Pero esto es precisamente lo que Pk(k) está tratando de decirnos. Por lo tanto, lo que afirma Pk(k) debe ser un enunciado verdadero, de modo que Pk(k) debe ser verdadera como proposición aritmética. Entonces ¡hemos encontrado una proposición verdadera que no tiene demostración dentro del sistema!

¿Qué sucede con su negación ~Pk(k)? Se concluye que haríamos mejor en no encontrar tampoco una demostración de esta otra. Acabamos de establecer que ~Pk(k) debe ser falsa (puesto que Pk(k) es verdadera), ¡pero se suponía que no podíamos demostrar proposiciones falsas dentro del sistema! Así, ni Pk(k) ni ~Pk(k) son demostrables dentro de nuestro sistema formal. Esto establece el teorema de Gödel.

La nueva mente del emperador
cubierta.xhtml
sinopsis.xhtml
titulo.xhtml
info.xhtml
dedicatoria.xhtml
Nota_para_el_lector.xhtml
Agradecimientos.xhtml
Procedencia_de_las_imagenes.xhtml
Prefacio.xhtml
Prologo.xhtml
Capitulo_1.xhtml
Capitulo_1_1.xhtml
Capitulo_1_2.xhtml
Capitulo_1_3.xhtml
Capitulo_1_4.xhtml
Capitulo_1_5.xhtml
Capitulo_1_6.xhtml
Capitulo_2.xhtml
Capitulo_2_1.xhtml
Capitulo_2_2.xhtml
Capitulo_2_3.xhtml
Capitulo_2_4.xhtml
Capitulo_2_5.xhtml
Capitulo_2_6.xhtml
Capitulo_2_7.xhtml
Capitulo_2_8.xhtml
Capitulo_2_9.xhtml
Capitulo_3.xhtml
Capitulo_3_1.xhtml
Capitulo_3_2.xhtml
Capitulo_3_3.xhtml
Capitulo_3_4.xhtml
Capitulo_3_5.xhtml
Capitulo_3_6.xhtml
Capitulo_3_7.xhtml
Capitulo_4.xhtml
Capitulo_4_1.xhtml
Capitulo_4_2.xhtml
Capitulo_4_3.xhtml
Capitulo_4_4.xhtml
Capitulo_4_5.xhtml
Capitulo_4_6.xhtml
Capitulo_4_7.xhtml
Capitulo_4_8.xhtml
Capitulo_4_9.xhtml
Capitulo_4_10.xhtml
Capitulo_4_11.xhtml
Capitulo_4_12.xhtml
Capitulo_5.xhtml
Capitulo_5_1.xhtml
Capitulo_5_2.xhtml
Capitulo_5_3.xhtml
Capitulo_5_4.xhtml
Capitulo_5_5.xhtml
Capitulo_5_6.xhtml
Capitulo_5_7.xhtml
Capitulo_5_8.xhtml
Capitulo_5_9.xhtml
Capitulo_5_10.xhtml
Capitulo_5_11.xhtml
Capitulo_5_12.xhtml
Capitulo_5_13.xhtml
Capitulo_5_14.xhtml
Capitulo_5_15.xhtml
Capitulo_6.xhtml
Capitulo_6_1.xhtml
Capitulo_6_2.xhtml
Capitulo_6_3.xhtml
Capitulo_6_4.xhtml
Capitulo_6_5.xhtml
Capitulo_6_6.xhtml
Capitulo_6_7.xhtml
Capitulo_6_8.xhtml
Capitulo_6_9.xhtml
Capitulo_6_10.xhtml
Capitulo_6_11.xhtml
Capitulo_6_12.xhtml
Capitulo_6_13.xhtml
Capitulo_6_14.xhtml
Capitulo_6_15.xhtml
Capitulo_6_16.xhtml
Capitulo_6_17.xhtml
Capitulo_6_18.xhtml
Capitulo_6_19.xhtml
Capitulo_6_20.xhtml
Capitulo_6_21.xhtml
Capitulo_6_22.xhtml
Capitulo_6_23.xhtml
Capitulo_6_24.xhtml
Capitulo_7.xhtml
Capitulo_7_1.xhtml
Capitulo_7_2.xhtml
Capitulo_7_3.xhtml
Capitulo_7_4.xhtml
Capitulo_7_5.xhtml
Capitulo_7_6.xhtml
Capitulo_7_7.xhtml
Capitulo_7_8.xhtml
Capitulo_7_9.xhtml
Capitulo_7_10.xhtml
Capitulo_7_11.xhtml
Capitulo_8.xhtml
Capitulo_8_1.xhtml
Capitulo_8_2.xhtml
Capitulo_8_3.xhtml
Capitulo_8_4.xhtml
Capitulo_8_5.xhtml
Capitulo_9.xhtml
Capitulo_9_1.xhtml
Capitulo_9_2.xhtml
Capitulo_9_3.xhtml
Capitulo_9_4.xhtml
Capitulo_9_5.xhtml
Capitulo_9_6.xhtml
Capitulo_9_7.xhtml
Capitulo_9_8.xhtml
Capitulo_9_9.xhtml
Capitulo_9_10.xhtml
Capitulo_9_11.xhtml
Capitulo_9_12.xhtml
Capitulo_10.xhtml
Capitulo_10_1.xhtml
Capitulo_10_2.xhtml
Capitulo_10_3.xhtml
Capitulo_10_4.xhtml
Capitulo_10_5.xhtml
Capitulo_10_6.xhtml
Capitulo_10_7.xhtml
Capitulo_10_8.xhtml
Capitulo_10_9.xhtml
Capitulo_10_10.xhtml
Capitulo_10_11.xhtml
Capitulo_10_12.xhtml
Capitulo_10_13.xhtml
Capitulo_10_14.xhtml
Capitulo_10_15.xhtml
Capitulo_10_16.xhtml
Epilogo.xhtml
Referencias.xhtml
autor.xhtml
notas.xhtml